• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

求解双曲守恒律方程的WENO型熵相容格式

程晓晗 封建湖 聂玉峰

程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
引用本文: 程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
Citation: Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07

求解双曲守恒律方程的WENO型熵相容格式

doi: 10.11883/1001-1455(2014)04-0501-07
基金项目: 国家自然科学基金项目(11171043);中央高校基本科研业务费专项项目(CHD2010JC060)
详细信息
    作者简介:

    程晓晗(1987—), 男, 博士研究生

  • 中图分类号: O354;O242

WENO type entropy consistent scheme for hyperbolic conservation laws

Funds: Supported bythe National Natural Science Foundation of China (11171043)
More Information
  • 摘要: 通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。
  • 图  1  无黏Burgers方程间断初值问题

    Figure  1.  Discontinuous initial value problem of Burgers equation

    图  2  一维Euler方程Sod激波管问题

    Figure  2.  Sod shock tube problem of 1D Euler equation

    图  3  一维Euler方程低密度流问题

    Figure  3.  Low density problem of 1D Euler equation

    图  4  一维Euler方程强稀疏波问题

    Figure  4.  Density of strong expansion problem of 1D Euler equation

    表  1  EC-WENO格式的数值精度

    Table  1.   Numerical accuracy of EC-WENO scheme

    网格数L1精度阶L精度阶
    201.420 0×10-21.020 0×10-2
    404.653 5×10-44.931 43.859 9×10-44.723 9
    801.447 5×10-55.006 71.310 2×10-54.880 7
    1604.515 7×10-75.002 54.137 0×10-74.985 1
    下载: 导出CSV
  • [1] Roe P L. Approximate Rieman solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [2] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
    [3] Roe P L. Affordable, entropy-consistent, flux functions[C]//Oral Talk at Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Lyon, France, 2006.
    [4] Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions, Ⅱ: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021
    [5] Tadmor E. Numerical viscosity and the entropy conditions for conservative difference schemes[J]. Mathematics of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
    [6] Liu X D, Osher O, Chan T. Weighted essentially non-oscillatory schems[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [7] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. doi: 10.1017/S0962492902000156
    [8] Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations[R]. Hong Kong: Foundations of Computational Mathematics, 2008.
    [9] Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X
  • 期刊类型引用(5)

    1. 吕梦迪. 针对二维双曲守恒律方程求解方法的研究. 广西物理. 2021(01): 39-41 . 百度学术
    2. 刘友琼,刘庆升,荣宪举,黄封林. 一类求解浅水波方程的基本无振荡熵稳定格式. 信阳师范学院学报(自然科学版). 2019(03): 345-351 . 百度学术
    3. 张海军,封建湖,程晓晗,李雪. 带源项浅水波方程的高分辨率熵稳定格式. 应用数学和力学. 2018(08): 935-945 . 百度学术
    4. 谢政,谢建,李良. 一种三阶有限体积法及其在欠膨胀射流激波结构数值模拟中的应用. 爆炸与冲击. 2017(02): 347-352 . 本站查看
    5. 陈荣三,苏蒙,邹敏,肖莉. 满足最大值原理的熵格式计算线性传输方程. 同济大学学报(自然科学版). 2017(08): 1243-1248 . 百度学术

    其他类型引用(4)

  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
基于罚函数法的大变形冲击碰撞问题显式健壮格式
初东阳 等, 爆炸与冲击, 2025
基于立方型气体状态方程的激波风洞准一维流动数值研究
张洲铭 等, 爆炸与冲击, 2024
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
三维瞬态对流扩散问题的插值型维数分裂无单元galerkin方法
成毓俊 等, 计算机辅助工程, 2024
非结构网格通量重构算法下三种紧致weno限制器对比研究
石京昶 等, 空气动力学学报, 2023
一种求解低速跨流域流固耦合问题的离散统一气体动理学格式
王勇 等, 空气动力学学报, 2022
Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: insights into protein quality
Chen, Lu et al., FOOD CHEMISTRY, 2024
A class of digital integrators based on trigonometric quadrature rules
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Piecewise calculation scheme for the unconditionally stable chebyshev finite-difference time-domain method
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2025
Powered by
图(4) / 表(1)
计量
  • 文章访问数:  3441
  • HTML全文浏览量:  378
  • PDF下载量:  474
  • 被引次数: 9
出版历程
  • 收稿日期:  2012-11-22
  • 修回日期:  2013-06-03
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回