Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations
-
摘要: 在金属薄壁圆管的基础上,引入圆弧形凹槽诱导结构并以其为研究对象,建立以凹槽数量及其半径为优化参数,以比吸能和压溃力效率为评价指标的多目标优化模型。分析研究均布设置诱导凹槽对结构吸能、最大峰值压溃力及压溃力曲线平稳性的影响。采用有限元软件LS-DYNA得到不同几何参数模型的碰撞响应,结合径向基函数法构造近似函数,并采用理想点法进行优化设计,得出使结构最优时的凹槽数量和半径,从而得到了理想的诱导凹槽优化结构。Abstract: Circular arc indentations were introduced into metal thin-walled cylinders.And a multi-objective optimization model was built by taking the number and the radius of the indentations as optimization parameters, as well as the specific energy absorption and the crushing force efficiency as evaluation indexes.The effects of the circular arc indentations introduced with uniform intervals were analyzed on the structural energy absorption, the maximum crushing force and the smoothness of the crushing force curve.The collision responses of different geometrical models were obtained by using the finite element software LS-DYNA.The objective functions were constructed based on the radial basis function.The multi-objective optimization for the thin-walled cylinders with the induced indentations was presented by using the ideal point method.The number and the radius of the optimal indentations were obtained.So the optimization design was achieved for the ideal indentations.
-
表 2 改进模型的有限元分析结果及实验值对比
Table 2. Comparison of the improved model between experiment and simulation
m Fmax/kN Fm/kN η E/kJ χ/(kJ·kg-1) 实验 有限元 实验 有限元 0 120.30 120.09 50.36 0.420 0 2.95 2.94 55.60 1 80.26 77.82 46.14 0.592 9 2.93 2.91 54.29 2 91.63 88.39 42.48 0.480 6 2.87 2.90 53.90 3 94.32 89.26 42.32 0.474 1 2.90 2.93 54.26 4 90.53 87.12 40.92 0.469 7 2.91 2.94 54.24 表 3 单目标函数优化结果
Table 3. Optimums of single objective functions
单目标函数 m r/mm χ/(kJ·kg-1) η max χ 1 0.800 54.29 0.592 9 max η 4 1.198 51.94 0.682 5 -
[1] 李亦文, 徐涛, 徐天爽, 等.车身低速碰撞吸能结构的优化设计[J].北京理工大学学报, 2010, 30(10): 1175-1179. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201010011.htmLi Yi-wen, Xu Tao, Xu Tian-shuang, et al. Optimal design of energy-absorbing structure of autobody under low speed crash[J]. Transaction of Beijing Institute of Technology, 2010, 30(10): 1175-1179. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201010011.htm [2] Avalle M, Chiandussi G. Optimization of a vehicle energy absorbing steel component with experimental validation[J]. International Journal of Impact Engineering, 2007, 34(4): 843-858. http://www.sciencedirect.com/science/article/pii/S0734743X06000315 [3] Cho Y B, Bae C H, Suh M W, et al. A vehicle front frame crash design optimization using hole-type and dent-type crush initiator[J]. Thin-Walled Structures, 2006, 44(4): 415-428. http://www.sciencedirect.com/science/article/pii/S0263823106000401 [4] 张涛, 刘土光, 肖汉林, 等.高速冲击下薄壁组合结构吸能特性研究[J].爆炸与冲击, 2006, 26(5): 395-403. http://www.cqvip.com/Main/Detail.aspx?id=23014353Zhang Tao, Liu Tu-guang, Xiao Han-ling, et al. Energy absorption performance of thin-walled structures with triggering holes subjected to high-speed axial impact[J]. Explosion and Shock Waves, 2006, 26(5): 395-403. http://www.cqvip.com/Main/Detail.aspx?id=23014353 [5] 王海亮, 林忠钦, 金先龙.基于响应面模型的薄壁构件抗撞性优化设计[J].应用力学学报, 2003, 20(3): 61-66. http://www.cqvip.com/QK/91535X/20033/8423784.htmlWang Hai-liang, Lin Zhong-qin, Jin Xian-long. Optimal design of thin-walled sections for structural crashworthiness based on the response surface model[J]. Chinese Journal of Apllied Mechanics, 2003, 20(3): 61-65. http://www.cqvip.com/QK/91535X/20033/8423784.html [6] Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures, 2002, 40(4): 311-327. http://www.sciencedirect.com/science/article/pii/S0263823101000696 [7] Tai Y S, Huang M Y, Hu H T. Axial compression and energy absorption characteristics of high-strength thinwalled cylinders under impact load[J]. Theoretical and Appied Fracture Mechanics, 2010, 53(1): 1-8. http://www.sciencedirect.com/science/article/pii/S0167844209001189 [8] Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization[J]. Computers and Structures, 2005, 83(25/26): 2121-2136. http://dl.acm.org/citation.cfm?id=1668620 [9] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. http://www.tandfonline.com/servlet/linkout?suffix=CIT0028&dbid=16&doi=10.1080%2F0305215X.2017.1358711&key=10.1007%2Fs00158-001-0160-4 [10] Rais-Rohani M, Singh M N. Comparison of global and local response surface techniques in reliability-based optimization of composite structures[J]. Structural and Multidisciplinary Optimization, 2003, 26(5): 333-345. doi: 10.1007/s00158-003-0353-0 [11] Fang Hong-bing, Wang Qian. On the effectiveness of assessing model accuracy at design points for radial basis functions[J]. Communications in Numerical Methods in Engineering, 2008, 24(3): 219-235.