Characteristics of flame propagation during coal dust cloud explosion
-
摘要: 为了揭示煤粉尘爆炸过程中火焰传播特征,采用2种不同质量分数挥发分的煤粉在半封闭竖直燃烧管中进行实验。分别使用高速摄影装置和红外热成像装置记录火焰传播过程和空间的温度分布情况,并分析2种煤粉尘云的火焰传播速度和温度曲线。结果表明:在同等条件下,火焰在挥发分质量分数高的煤粉尘云中的传播速度和火焰温度要高于其在挥发分质量分数较低的煤粉尘云中的。煤粉尘云的体积质量和点火能量也影响着火焰的传播过程,随着煤粉尘云体积质量的增大,火焰的传播速度和火焰温度整体上呈现先增大后减小的趋势,在传播的后半段火焰速度出现震荡现象;随着点火能量的增大,火焰在煤粉尘云中的传播速度和最高温度也相应升高。通过大量的实验数据计算得到特定条件下火焰传播速度和温度的经验公式。Abstract: Two kinds of different volatile pulverized coal were tested in a semi-enclosed vertical combustion tube.And a high-speed video camera and an infrared imager were used to record the flame propagation process and the spatial flame temperature distribution, respectively.The changes of the flame propagation velocity and temperature with time were analyzed for the two different coal dust clouds during combustion.Experimental results show that the flame propagation velocity and flame temperature of the high-volatile coal dust cloud are higher than those of the low-volatile coal dust cloud under the same experimental conditions.And the volumic mass of coal dust cloud as well as ignition energy can affect the flame propagation.With increasing the volumic mass of coal dust cloud, the flame propagation velocity and the flame temperature increase at first and then decrease, oscillating phenomena appear in the next process.With increasing the ignition energy, the flame propagation velocity and flame temperature increase.Based on the experimental data, an empirical formula was proposed for calculating the flame propagation velocity and flame temperature under certain conditions.
-
表 1 煤粉各组分的质量分数
Table 1. Mass fraction of every component in coal dust
煤粉 w(水分)/% w(灰分)/% w(挥发分)/% w(固定碳)/% 1# 3.54 14.46 41.75 40.25 2# 3.93 19.72 35.40 40.95 -
[1] Proust Ch. A few fundamental aspects about ignition and flame propagation in dust clouds[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120. http://www.sciencedirect.com/science/article/pii/S0950423005001026 [2] Han O, Masaaki Y, Matsuda T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles'behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 153-160. doi: 10.1016/S0950-4230(00)00049-8 [3] Han O, Masaaki Y, Matsuda T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457. doi: 10.1016/S0950-4230(99)00072-8 [4] Gao W, Dobashi R, Toshio M, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6): 993-999. doi: 10.1016/j.jlp.2012.05.015 [5] 丁以斌, 孙金华, 何学超, 等.锆粉尘云的火焰传播特性[J].燃烧科学与技术, 2010, 16(4): 353-358. http://www.cqvip.com/Main/Detail.aspx?id=35258845Ding Yi-bin, Sun Jin-hua, He Xue-chao, et al. Flame propagation characteristic of zirconium particle cloud[J]. Journal of Combustion Science and Technology, 2010, 16(4): 353-358. http://www.cqvip.com/Main/Detail.aspx?id=35258845 [6] 蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4): 432-438. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201204016.htmKuai Nian-sheng, Huang Wei-xing, Yuan Jing-jie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Waves, 2012, 32(4): 432-438. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201204016.htm [7] 来诚锋, 段滋华, 张永发, 等.煤粉末的爆炸机理[J].爆炸与冲击, 2010, 30(3): 325-328.Lai Cheng-feng, Duan Zi-hua, Zhang Yong-fa, et al. Explosion mechanism of carbon powder[J]. Explosion and Shock Waves, 2010, 30(3): 325-328. [8] 高聪, 李化, 苏丹, 等.密闭空间煤粉的爆炸特性[J].爆炸与冲击, 2010, 30(2): 164-168.Gao Cong, Li Hua, Su Dan, et al. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion and Shock Waves, 2010, 30(2): 164-168. [9] 徐旭常, 周力行.燃烧技术手册[M].北京: 化学工业出版社, 2007. [10] Ewald K H, Anselmi-Tamburini U, Munir Z A. Combustion of zirconium powders in oxygen[J]. Materials Science and Engineering, 2000, 291(1/2): 118-130. http://www.sciencedirect.com/science/article/pii/S0921509300009679 [11] Hanai H, Kobayashi H, Niioka T. A numerical study of pulsating flame propagation in mixtures of gas and particles[J]. Proceedings of the Combustion Institute, 2000, 28(1): 815-822. doi: 10.1016/S0082-0784(00)80285-4 [12] 潘峰, 马超, 曹卫国, 等.玉米淀粉粉尘爆炸危险性研究[J].中国安全科学学报, 2011: 21(7): 46-51. http://d.wanfangdata.com.cn/Periodical/zgaqkxxb201107008Pan Feng, Ma Chao, Cao Wei-guo, et al. Research on explosion risk of corn starch dust[J]. China Safety Science Journal, 2011, 21(7): 46-51. http://d.wanfangdata.com.cn/Periodical/zgaqkxxb201107008 [13] Dreizin L, Hoffman K. Constant pressure combustion of aerosol of coarse magnesium panicles in microgravity[J]. Combustion and Flame, 1999, 118(1): 262-280. http://www.sciencedirect.com/science/article/pii/S0010218098001448 [14] 仲倩, 王伯良, 黄菊, 等.火球动态模型在温压炸药热毁伤效应评估中的应用[J].爆炸与冲击, 2011, 31(5): 528-532.Zhong Qian, Wang Bo-liang, Huang Ju, et al. Application of a dynamic model to thermal damage estimation of thermobaric explosives[J]. Explosion and Shock Waves, 2011, 31(5): 528-532.