泡沫金属的微惯性效应和动态塑性泊松比

王长峰 郑志军 虞吉林

王长峰, 郑志军, 虞吉林. 泡沫金属的微惯性效应和动态塑性泊松比[J]. 爆炸与冲击, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07
引用本文: 王长峰, 郑志军, 虞吉林. 泡沫金属的微惯性效应和动态塑性泊松比[J]. 爆炸与冲击, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07
Wang Chang-feng, Zheng Zhi-jun, Yu Ji-lin. Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression[J]. Explosion And Shock Waves, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07
Citation: Wang Chang-feng, Zheng Zhi-jun, Yu Ji-lin. Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression[J]. Explosion And Shock Waves, 2014, 34(5): 601-607. doi: 10.11883/1001-1455(2014)05-0601-07

泡沫金属的微惯性效应和动态塑性泊松比

doi: 10.11883/1001-1455(2014)05-0601-07
基金项目: 国家自然科学基金项目(90916026,11002140,11372308)
详细信息
    作者简介:

    王长峰(1984—), 男, 博士研究生

  • 中图分类号: O347.3

Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression

  • 摘要: 采用三维Voronoi技术和显式有限元方法来研究闭孔和开孔两种泡沫金属的动态塑性泊松比问题和微惯性效应。细观数值模拟的结果表明:塑性泊松比随着轴向应变的增加而下降,塑性泊松比的峰值随着冲击速度的增加而下降;相对密度增加时,泡沫金属塑性泊松比增加;微惯性对平台应力的影响不大。该数值模拟结果能够解释侧向约束情况下闭孔泡沫金属的压溃应力随着加载速率的提高而下降的实验现象。
  • 图  1  含600个胞元的三维Voronoi构型

    Figure  1.  Three-dimension voronoi models with 600nucleus

    图  2  泡沫金属在不同冲击速度下的变形模式

    Figure  2.  Deformation modes of metallic foam under different impact velocities

    图  3  泡沫金属的应力均匀性指标随冲击速度变化关系

    Figure  3.  Stress uniformity index varied with impact velocity for metallic foam

    图  4  不同相对密度的泡沫金属的塑性泊松比随轴向应变的变化

    Figure  4.  Plastic Poisson's ratio varied with longitudinal strain for foams with different relative densities

    图  5  不同冲击速度下泡沫金属塑性泊松比随轴向应变的变化

    Figure  5.  Plastic Poisson's ratio varied with longitudinal strain at different impact velocities

    图  6  泡沫金属塑性泊松比峰值随冲击速度的变化

    Figure  6.  Peak value of plastic Poisson's ratio varied with impact velocity

    图  7  泡沫金属微惯性参数随轴向应变的变化

    Figure  7.  Micro-inertia parameter varied with longitudinal strain for metallic foam

    图  8  泡沫金属微惯性参数随冲击速度的变化

    Figure  8.  Micro-inertia parameter varied with impact velocity

  • [1] Gioux G, McCormack T M, Gibson L J. Failure of aluminum foams under multiaxial loads[J]. International Journal of Mechanical Sciences, 2000, 42(6): 1097-1117. doi: 10.1016/S0020-7403(99)00043-0
    [2] Doyoyo M, Wierzbicki T. Experimental studies on the yield behavior of ductile and brittle aluminum foams[J]. International Journal of Plasticity, 2003, 19(8): 1195-1214. doi: 10.1016/S0749-6419(02)00017-7
    [3] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253-1283.
    [4] Chen C, Lu T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids[J]. International Journal of Solids and Structures, 2000, 37(52): 7769-7786. doi: 10.1016/S0020-7683(00)00003-2
    [5] Yu J L, Wang E H, Li J R. An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression[M]. Lancaster: D E Stech Publications, 2008: 879-882.
    [6] Kumar P S, Ramachandra S, Ramamurty U. Effect of displacement-rate on the indentation behavior of an aluminum foam[J]. Materials Science and Engineering: A, 2003, 347(1/2): 330-337.
    [7] Lopatnikov S L, Gama B A, Haque M J et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61(1/2): 61-71.
    [8] Okabe A, Boots B, Sugihara K. Spatial tessellations: Concepts and applications of Voronoi diagrams[M]. Chichester Wiley, 1992: 229-287.
    [9] Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2Dcellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664.
    [10] Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22/23): 3988-3998.
    [11] Raj R E, Parameswaran V, Daniel B S S. Comparison of quasi-static and dynamic compression behavior of closedcell aluminum foam[J]. Materials Science and Engineering: A, 2009, 526(1/2): 11-15.
    [12] Vesenjak M, Veyhl C, Fiedler T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541: 105-109. doi: 10.1016/j.msea.2012.02.010
    [13] Montanini R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation[J]. International Journal of Mechanical Sciences, 2005, 47(1): 26-42. doi: 10.1016/j.ijmecsci.2004.12.007
    [14] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
  • 加载中
图(8)
计量
  • 文章访问数:  3361
  • HTML全文浏览量:  308
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-26
  • 修回日期:  2013-10-17
  • 刊出日期:  2014-09-25

目录

    /

    返回文章
    返回