Influences of base isolation system on seismic resistance of nuclear power plant containment
-
摘要: 为了确保核电站在遭受破坏性的地震后,安全壳要保持密封性且不被破坏,基于地震波在结构中的传播规律,从隔震技术的原理出发,建立较为准确的三维安全壳有限元模型,运用定性的方法对核电厂安全壳进行数值模拟,对比了极限安全地震动作用下采取隔震技术和不采取隔震技术安全壳的动力响应。采取隔震措施的安全壳的顶点在x、y、z方向的最大加速度分别为2.85、12.84和3.05m/s2,相比于无隔震措施的安全壳,加速度分别降低了79.52%、27.56%和79.47%。结果表明,隔震技术能有效地减小核电站安全壳的地震反应。Abstract: The study explored how to keep the reinforced concrete containment sealed and undamaged for the nuclear power plant subjected to a severe earthquake during the plant life.The propagation of seismic waves along the structure was analyzed.And based on the structural isolation technology, a three-dimensional finite element model was developed for the reinforced concrete containment.The application of the isolation technology to the reinforced concrete containment was discussed by applying a deterministic methodological approach.For the nuclear power plant subjected to a safe shutdown earthquake, the dynamic response of the reinforced concrete containment with isolators was compared with that of one without isolators.The accelerations at the dome vertex of the isolated containment along the x, yand z axes are about 2.85m/s2, 3.05m/s2 and 12.84m/s2, respectively, which are 79.52%, 79.47%and 27.56%, respectively, lower compared with the isolated containment.So the isolation system is helpful for mitigating the seismic response of the nuclear power plant containment.
-
表 1 隔震和不隔震安全壳的的振动模态
Table 1. Vibration mode of containment
模态 fi/Hz T/s 无隔震 有隔震 无隔震 有隔震 1 4.375 3 0.363 4 0.228 6 2.752 2 2 4.395 4 0.402 4 0.227 5 2.484 9 3 6.249 8 0.402 4 0.160 0 2.484 9 4 6.252 8 4.283 4 0.159 9 0.233 5 5 7.139 1 4.287 6 0.140 1 0.233 2 -
[1] Zhao C F, Chen J Y, Wang Y, et al. Damage mechanism and response of reinforced concrete containment structure under internal blast loading[J]. Theoretical and Applied Fracture Mechanics, 2012, 61: 12-20. doi: 10.1016/j.tafmec.2012.08.002 [2] 文静, 司国建, 孙造占, 等.核电厂厂房基础隔震设计研究的构想[J].核安全, 2010, 4: 50-55. doi: 10.3969/j.issn.1672-5360.2010.04.010Wen Jing, Si Guo-jian, Sun Zao-zhan, et al. Proposal on research and design of base seismic isolation for nuclear power buildings in China[J]. Nuclear Safety, 2010, 4: 50-55. doi: 10.3969/j.issn.1672-5360.2010.04.010 [3] 谢礼立, 翟长海.核电工程应用隔震技术的可行性探讨[J].地震工程与工程振动, 2012, 32(1): 1-10.Xie Li-li, Zhai Chang-hai. A prospective study on applicability of base isolation in nuclear power plants[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(1): 1-10. [4] Yoo B, Lee J H, Koo G H, et al. Effects of high damping rubber bearing on seismic response of superstructure in base isolated system[C]∥Proceedings of the 13th International Conference on Structural Mechanics in Reactor Technology. Porto Alegre, Brazil, 1995. [5] Frano R L, Forasassi G. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor[J]. Nuclear Engineering and Design, 2010, 240(10): 3539-3549. doi: 10.1016/j.nucengdes.2010.07.023 [6] 李冬梅.某核电站安全壳的隔震地震反应分析[D].哈尔滨: 哈尔滨工程大学, 2007. [7] Burtscher S L, Dorfmann A. Compression and shear tests of anisotropic high damping rubber bearings[J]. Engineering Structures, 2004, 26(13): 1979-1991. doi: 10.1016/j.engstruct.2004.07.014 [8] Yoo B, Lee J H, Koo G H, et al. Seismic base isolation technologies for Korea advanced liquid metal reactor[J]. Nuclear Engineering and Design, 2000, 199(1/2): 125-142. 期刊类型引用(8)
1. 祁鹏飞,裴强,谯裕豪,鲁蕴华,夏超南. 基于摩擦摆支座的核安全壳结构隔震效果研究. 工程抗震与加固改造. 2024(04): 120-127 . 百度学术
2. 胡钟,薛卫,杨小林,张映玲. 基础隔震对核电厂反应堆厂房抗震的影响分析. 建筑结构. 2022(S2): 876-881 . 百度学术
3. 彭齐驭,刘玉岚,王彪. 考虑土-结构相互作用的安全壳隔震与支座数量优化. 防灾减灾工程学报. 2020(03): 372-379+438 . 百度学术
4. 赵春风,曾超,WITARTO W,MO Y L. 一维周期性基础的衰减域特性与隔震性能研究. 建筑结构学报. 2020(S2): 77-85 . 百度学术
5. 杨巧荣,李传德,许浩,刘文光. 核电厂负刚度阻尼隔震结构的地震响应研究. 原子能科学技术. 2019(04): 718-727 . 百度学术
6. 张雷,梁伟桥,王罡,侯兆新,张兴杰. 核反应堆厂房基底隔震设计与地震响应分析. 工业建筑. 2019(07): 70-76 . 百度学术
7. 朱秀云,林皋,潘蓉. 基底隔震对核电站反应堆厂房的地震响应影响分析. 原子能科学技术. 2017(04): 706-712 . 百度学术
8. 王艺萍,赵玉静. 核电站安全壳隔震可靠度研究. 山东工业技术. 2015(19): 156 . 百度学术
其他类型引用(7)
-