• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于圆筒实验的RDX/Al炸药反应进程

裴红波 焦清介 覃剑峰

李秀丽, 惠君明. 温压炸药的爆炸温度[J]. 爆炸与冲击, 2008, 28(5): 471-475. doi: 10.11883/1001-1455(2008)05-0471-05
引用本文: 裴红波, 焦清介, 覃剑峰. 基于圆筒实验的RDX/Al炸药反应进程[J]. 爆炸与冲击, 2014, 34(5): 636-640. doi: 10.11883/1001-1455(2014)05-0636-05
LI Xiu-li, HUI Jun-ming. Detonation temperature of thermobaric explosives[J]. Explosion And Shock Waves, 2008, 28(5): 471-475. doi: 10.11883/1001-1455(2008)05-0471-05
Citation: Pei Hong-bo, Jiao Qing-jie, Qin Jian-feng. Reaction process of aluminized RDX-based explosives based on cylinder test[J]. Explosion And Shock Waves, 2014, 34(5): 636-640. doi: 10.11883/1001-1455(2014)05-0636-05

基于圆筒实验的RDX/Al炸药反应进程

doi: 10.11883/1001-1455(2014)05-0636-05
基金项目: 国家自然科学基金项目(11172042)
详细信息
    作者简介:

    裴红波(1987—), 男, 博士研究生

  • 中图分类号: O383

Reaction process of aluminized RDX-based explosives based on cylinder test

  • 摘要: 对RDX炸药和2种铝粉质量分数分别为15%、30%的RDX基含铝炸药进行∅50mm圆筒实验,研究铝粉含量对炸药做功能力的影响,根据格尼公式分析铝粉与爆轰产物的反应进程。结果表明:在圆筒实验记录的时间范围内,铝粉质量分数为15%的含铝炸药做功能力最强,RDX炸药次之,铝粉质量分数为30%炸药做功能力最弱;34μs时刻,铝粉质量分数为15%的炸药,铝粉的反应度为0.49,而铝粉质量分数为30%炸药铝粉的反应度仅为0.21,含铝炸药中铝粉的反应时间在50~200μs之间。
  • 图  1  圆筒实验装置示意图

    Figure  1.  Schematic diagram of the cylinder tests

    图  2  圆筒膨胀过程

    Figure  2.  Cylinder expansion process

    图  3  不同膨胀距离处圆筒壁速

    Figure  3.  Wall velocities at different expansion distances

    图  4  圆筒壁速度时程曲线

    Figure  4.  Histories of wall velocity

    图  5  不同膨胀距离处筒壁比动能关系

    Figure  5.  Wall specific kinetic energies vs expansion distances

    图  6  圆筒壁加速度时程曲线

    Figure  6.  Histories of wall acceleration

    图  7  含铝炸药中铝粉反应度

    Figure  7.  Reaction degree of aluminum in explosive

    表  1  炸药配方

    Table  1.   Explosive formulations

    炸药 w(RDX) w(Al) ρ/(g·cm-3) w(Al)/w(O) v/(m·s-1)
    RA0 100 0 1.673 0 8 325
    RA15 80 15 1.763 0.257 8 121
    RA30 70 30 1.865 0.632 7 879
    下载: 导出CSV

    表  2  圆筒实验拟合系数

    Table  2.   Fitting coefficients of cylinder test

    炸药 a b c d v/(m·s-1)
    RA0 3.960 0.593 1 -3.613 -0.109 00 8 325
    RA15 5.511 0.571 0 -4.601 -0.073 64 8 121
    RA30 5.740 0.616 9 -4.644 -0.080 71 7 879
    下载: 导出CSV

    表  3  含铝炸药的爆热

    Table  3.   Heat of aluminum explosive

    炸药 ρT/(g·cm-3) ρ0/(g·cm-3) Q/(MJ·kg-1) Qe/(MJ·kg-1) Q(Al)/(MJ·kg-1)
    RA0 1.737 1.677 5.637 5.637 -
    RA15 1.817 1.775 6.489 4.801 1.688
    RA30 1.906 1.861 7.324 3.950 3.374
    下载: 导出CSV
  • [1] Victorow S B. The effect of Al2O3 phase transitions on detonation properties aluminized explosives[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002.
    [2] Milne A M, Longbottom A W, Evans D J. The burning rate of aluminum particles in nitromethane in cylinder tests[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002.
    [3] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//Proceedings of MRS Symposium, Materials Research Society 1996: 413-419.
    [4] Trzcinski W A. Studies of detonation characteristics of aluminum enriched RDX compositions[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(5): 392-400. doi: 10.1002/prep.200700201
    [5] Brousseau P. Detonation properties of explosives containing nanometric aluminum powder[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002.
    [6] 于川, 李良忠, 黄毅民.含铝炸药爆轰产物JWL状态方程研究[J].爆炸与冲击, 1999, 19(3): 274-279.

    Yu Chuan, Li Liang-zhong, Huang Yi-min. Studies on JWL equation of state of detonation product for aluminized explosive[J]. Explosion and Shock Waves, 1999, 19(3): 274-279.
    [7] 计冬奎, 高修柱, 肖川, 等.含铝炸药作功能力和JWL状态方程尺寸效应研究[J].兵工学报, 2012, 33(5): 552-555. http://d.wanfangdata.com.cn/Periodical/bgxb201205007

    Ji Dong-kui, Gao Xiu-zhu, Xiao Chuan, et al. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 33(5): 552-555. http://d.wanfangdata.com.cn/Periodical/bgxb201205007
    [8] 卢校军, 王蓉, 黄毅民, 等.两种含铝炸药作功能力与JWL状态方程研究[J].含能材料, 2005, 13(3): 144-147. doi: 10.3969/j.issn.1006-9941.2005.03.003

    Lu Xiao-jun, Wang Rong, Huang Yi-min, et al. Study on work ability and JWL equation of state of two aluminized explosives[J]. Energetic Materials, 2005, 13(3): 144-147. doi: 10.3969/j.issn.1006-9941.2005.03.003
    [9] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2001.
    [10] Baudin G, Lefrancois A, Bergues D, et al. Combustion of nanophase aluminum in the detonation products of nitromethane[C]//Proceedings of the 11th International Detonation Symposium. Snowmass, USA, 1998.
  • 期刊类型引用(11)

    1. 郭宗韬,许进升,陈雄,曹欣宇,庞嵩林,王金东. 冲击载荷下NEPE高能固体推进剂响应特性分析及点火增长模型参数标定. 含能材料. 2025(02): 165-177 . 百度学术
    2. 高龙翔,高涵,潘文,薛乐星,冯晓军. 光电测试技术在炸药爆轰性能研究中的应用进展. 火炸药学报. 2024(12): 1055-1073 . 百度学术
    3. Hong-fu Wang,Yan Liu,Fan Bai,Jun-bo Yan,Xu Li,Feng-lei Huang. A quasi-isentropic model of a cylinder driven by aluminized explosives based on characteristic line analysis. Defence Technology. 2022(11): 1979-1999 . 必应学术
    4. 段继. 含铝炸药爆轰驱动的非线性特征线模型. 爆炸与冲击. 2021(09): 16-26 . 本站查看
    5. 陈鸿,何勇,潘绪超,焦俊杰,沈杰,张江南. RDX基含铝炸药爆炸电磁辐射信号特性实验研究. 含能材料. 2020(05): 475-482 . 百度学术
    6. 王永顺,贾宪振,刘瑞鹏. 含铝炸药爆轰产物JWL状态方程参数的预估方法研究. 爆破. 2019(01): 49-54 . 百度学术
    7. 裴红波,钟斌,李星瀚,张旭,郑贤旭. RDX基含铝炸药圆筒试验及状态方程研究. 火炸药学报. 2019(04): 403-409 . 百度学术
    8. 李亮亮,屈可朋,沈飞,肖玮,王辉. 基于霍普金森压杆的RDX基含铝炸药装药双脉冲加载实验. 火炸药学报. 2018(01): 52-56 . 百度学术
    9. 范士锋. 氧化剂对炸药水中爆炸能量输出结构的影响. 爆破器材. 2017(02): 43-46 . 百度学术
    10. 田少康,李席,刘波,范伟,韩志伟,王伯良. 一种RDX基温压炸药的JWL-Miller状态方程研究. 含能材料. 2017(03): 226-231 . 百度学术
    11. Lemi Türker. RDX-Aluminum Interaction——A DFT Study. 火炸药学报. 2016(04): 12-18 . 百度学术

    其他类型引用(8)

  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  3173
  • HTML全文浏览量:  373
  • PDF下载量:  407
  • 被引次数: 19
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2013-05-22
  • 刊出日期:  2014-09-25

目录

    /

    返回文章
    返回