Reaction process of aluminized RDX-based explosives based on cylinder test
-
摘要: 对RDX炸药和2种铝粉质量分数分别为15%、30%的RDX基含铝炸药进行∅50mm圆筒实验,研究铝粉含量对炸药做功能力的影响,根据格尼公式分析铝粉与爆轰产物的反应进程。结果表明:在圆筒实验记录的时间范围内,铝粉质量分数为15%的含铝炸药做功能力最强,RDX炸药次之,铝粉质量分数为30%炸药做功能力最弱;34μs时刻,铝粉质量分数为15%的炸药,铝粉的反应度为0.49,而铝粉质量分数为30%炸药铝粉的反应度仅为0.21,含铝炸药中铝粉的反应时间在50~200μs之间。Abstract: The copper cylinder tests were carried out to explore the effects of the aluminum contents on the performances of aluminized RDX-based explosives.In the tests, the outer diameter of the copper cylinder was 50 mm and the mass fractions of aluminum in the three RDX-based explosives were 0, 15% and 30%, respectively.In the three explosives tested, the acceleration ability of the explosive with the aluminum mass fraction of 15% was highest.However, the acceleration ability of the explosive with the aluminum mass fraction of 30% was lower than that of the pure RDX.The Gurney formula was used to analyze the reaction process of aluminum with detonation products in the aluminized RDX-based explosives.About 49% aluminum by mass had reacted in the explosive with the aluminum mass fraction of 15% at 34 μs, while in the explosive with the aluminum mass fraction of 30%, only about 21% aluminum by mass had reacted.And the reaction time of aluminum powder with the size of 10 μm was 50-200 μs.
-
Key words:
- mechanics of explosion /
- reaction process /
- cylinder test /
- aluminized explosive /
- reaction time /
- RDX
-
表 1 炸药配方
Table 1. Explosive formulations
炸药 w(RDX) w(Al) ρ/(g·cm-3) w(Al)/w(O) v/(m·s-1) RA0 100 0 1.673 0 8 325 RA15 80 15 1.763 0.257 8 121 RA30 70 30 1.865 0.632 7 879 表 2 圆筒实验拟合系数
Table 2. Fitting coefficients of cylinder test
炸药 a b c d v/(m·s-1) RA0 3.960 0.593 1 -3.613 -0.109 00 8 325 RA15 5.511 0.571 0 -4.601 -0.073 64 8 121 RA30 5.740 0.616 9 -4.644 -0.080 71 7 879 表 3 含铝炸药的爆热
Table 3. Heat of aluminum explosive
炸药 ρT/(g·cm-3) ρ0/(g·cm-3) Q/(MJ·kg-1) Qe/(MJ·kg-1) Q(Al)/(MJ·kg-1) RA0 1.737 1.677 5.637 5.637 - RA15 1.817 1.775 6.489 4.801 1.688 RA30 1.906 1.861 7.324 3.950 3.374 -
[1] Victorow S B. The effect of Al2O3 phase transitions on detonation properties aluminized explosives[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002. [2] Milne A M, Longbottom A W, Evans D J. The burning rate of aluminum particles in nitromethane in cylinder tests[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002. [3] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//Proceedings of MRS Symposium, Materials Research Society 1996: 413-419. [4] Trzcinski W A. Studies of detonation characteristics of aluminum enriched RDX compositions[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(5): 392-400. doi: 10.1002/prep.200700201 [5] Brousseau P. Detonation properties of explosives containing nanometric aluminum powder[C]//Proceedings of the 12th International Detonation Symposium. San Diego, USA, 2002. [6] 于川, 李良忠, 黄毅民.含铝炸药爆轰产物JWL状态方程研究[J].爆炸与冲击, 1999, 19(3): 274-279.Yu Chuan, Li Liang-zhong, Huang Yi-min. Studies on JWL equation of state of detonation product for aluminized explosive[J]. Explosion and Shock Waves, 1999, 19(3): 274-279. [7] 计冬奎, 高修柱, 肖川, 等.含铝炸药作功能力和JWL状态方程尺寸效应研究[J].兵工学报, 2012, 33(5): 552-555. http://d.wanfangdata.com.cn/Periodical/bgxb201205007Ji Dong-kui, Gao Xiu-zhu, Xiao Chuan, et al. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 33(5): 552-555. http://d.wanfangdata.com.cn/Periodical/bgxb201205007 [8] 卢校军, 王蓉, 黄毅民, 等.两种含铝炸药作功能力与JWL状态方程研究[J].含能材料, 2005, 13(3): 144-147. doi: 10.3969/j.issn.1006-9941.2005.03.003Lu Xiao-jun, Wang Rong, Huang Yi-min, et al. Study on work ability and JWL equation of state of two aluminized explosives[J]. Energetic Materials, 2005, 13(3): 144-147. doi: 10.3969/j.issn.1006-9941.2005.03.003 [9] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2001. [10] Baudin G, Lefrancois A, Bergues D, et al. Combustion of nanophase aluminum in the detonation products of nitromethane[C]//Proceedings of the 11th International Detonation Symposium. Snowmass, USA, 1998.