接触爆炸荷载作用下带孔防护结构内冲击波的传播规律

范进 徐大立 任新见

范进, 徐大立, 任新见. 接触爆炸荷载作用下带孔防护结构内冲击波的传播规律[J]. 爆炸与冲击, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09
引用本文: 范进, 徐大立, 任新见. 接触爆炸荷载作用下带孔防护结构内冲击波的传播规律[J]. 爆炸与冲击, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09
Fan Jin, Xu Da-li, Ren Xin-jian. Propagation of shock waves in protective structures with holes under contact explosive loads[J]. Explosion And Shock Waves, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09
Citation: Fan Jin, Xu Da-li, Ren Xin-jian. Propagation of shock waves in protective structures with holes under contact explosive loads[J]. Explosion And Shock Waves, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09

接触爆炸荷载作用下带孔防护结构内冲击波的传播规律

doi: 10.11883/1001-1455(2014)06-0658-09
详细信息
    作者简介:

    范进(1962—), 男, 博士, 教授

  • 中图分类号: O382

Propagation of shock waves in protective structures with holes under contact explosive loads

More Information
  • 摘要: 采用有限元分析软件ATUODYN,对接触爆炸荷载作用下带孔防护结构内冲击波的传播进行了数值模拟,得到了防护结构孔口和内部中心处冲击波超压-时间曲线;分析了炸药量和爆心距孔口距离对防护结构内部超压、正压冲量的影响;以数值计算结果为基础,结合量纲分析,拟合得到了结构内部中心处爆炸冲击波特征参数的预估公式。
  • 图  1  模型坑道实物

    Figure  1.  Model tunnel for experiments

    图  2  直坑道化爆实验测点布置示意

    Figure  2.  The layout of gaging points for chemical explosion experiments in the straight tunnel

    图  3  典型监测点的冲击波超压-时间曲线

    Figure  3.  Overpressure-time curves of shock waves at typitcal gaging points

    图  4  空气、炸药及结构模型的实体

    Figure  4.  The model for air, TNT and structure

    图  5  钢筋模型

    Figure  5.  The model for reinforcing bars

    图  6  x=0.4m,m=4kg工况时,孔口处和结构内部中心处的冲击波超压-时间曲线

    Figure  6.  Overpressure-time curves of the shock waves around the orifice and in the center of the structure in the case of x=0.4m, m=4kg

    图  7  炸药在带孔结构外表面爆炸的冲击波传播压力云图

    Figure  7.  Pressure nephograms of the shock waves induced by TNT explosion outside the protective structure with holes

    图  8  不同工况下,测点1处的冲击波超压-时间曲线

    Figure  8.  Overpressure-time curves of the shock waves at the gaging point 1in the different cases

    图  9  弹药在混凝土结构表面爆炸示意图

    Figure  9.  The layout of the explosive outside the concrete structure

    表  1  不同工况下,结构内部中心处(测点1)冲击波的峰值超压和正压冲量

    Table  1.   The maximum overpressures and the positive pressure impulse of the shock waves in the center of the structure(the gaging point 1)

    工况x/mm/kgΔpmax/kPaI/(kPa·ms)
    10.1137.33548.986
    20.1274.80375.295
    30.14143.524145.473
    40.18236.057294.815
    50.2119.28025.333
    60.2232.66442.250
    70.2472.15966.803
    80.28144.075133.857
    90.4113.82719.713
    100.4219.71626.836
    110.4430.74543.958
    120.4850.81263.402
    130.8111.58119.290
    140.8218.70325.821
    150.8423.83741.739
    160.8835.53949.389
    下载: 导出CSV
  • [1] Henrych J.爆炸动力学及其应用[M].熊建国, 译.北京: 科学出版社, 1994: 74-77.
    [2] 叶序双.爆炸作用理论基础[M].南京: 解放军理工大学, 2001: 64-66.
    [3] Twisdale L A, Sues R H, Lavelle F M. Reliability-based analysis and design methods for reinforced concrete protective structures[M]. Tyndall Air Force Base: Air Force Civil Engineering Support Agency, 1993: 195-199.
    [4] Welch C R. In-tunnel airblast engineering model for internal and external detonations[C]//Proceedings of the 8th International Symposium on Interaction of the Effects of Munitions with Structures, 1997: 195-208.
    [5] Anet B, Binggeli E D. The use of the LS 2000-design charts for predictions of air blast loading in tunnels due to HE-detonations at the tunnel entrance[C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. 1999: 225-234.
    [6] 庞伟宾, 何翔, 李茂生, 等.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击, 2003, 23(6): 573-576.

    Pang Wei-bin, He Xiang, Li Mao-sheng, et al. The formula for airblast time of arrival in tunnel[J]. Explosion and Shock Waves, 2003, 23(6): 573-576.
    [7] 黄广炎, 冯顺山, 王云峰.装药约束对腔室爆炸冲击波传播特性影响的数值分析[J].系统仿真学报, 2009, 21(1): 58-61.

    Huang Guang-yan, Feng Shun-shan, Wang Yun-feng. Numerical analysis for influence of restriction of charges on shock wave propagation inside cavity[J]. Journal of System Simulation, 2009, 21(1): 58-61.
    [8] 刘瑞朝, 任新见.常规武器袭击下目标毁伤判据研究进展[J].防护工程, 2012, 37(5): 60-66.

    Liu Rui-chao, Ren Xin-jian. Research progress of the damage criterion by conventional weapon[J]. Protective Engineering, 2012, 37(5): 60-66.
    [9] 任新见, 张庆明, 薛一江, 等.坑道口部B炸药爆炸冲击波传播速度模型试验研究[J].振动与冲击, 2012, 31(7): 71-73.

    Ren Xin-jian, Zhang Qing-ming, Xu Yi-jiang, et al. Scale model tests to determine in-tunnel blast impact wave velocity for B-charges at tunnel entrance[J]. Journal of Vibration and Shock, 2012, 31(7): 71-73.
    [10] Welch C R. In-tunnel airblast engineering model for internal and external detonations[C]//Proceedings of the 8th International Symposium on Interaction of the Effects of Munitions with Structures. 1997: 195-208.
    [11] Century Dynamics Inc. Autodyn theory manual[M]. Concord, CA: Century Dynamics Inc, 2006: 133-141.
    [12] Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B-500numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. 1999: 315-322.
    [13] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large stains, high stain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, 1983: 541-547.
    [14] 谈庆明.量纲分析[M].合肥: 中国科学技术大学出版社, 2005: 120-123.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3024
  • HTML全文浏览量:  333
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-07-17
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回