TiNi合金冲击相变过程中温度变化规律的实验研究

刘永贵 唐志平 崔世堂

刘永贵, 唐志平, 崔世堂. TiNi合金冲击相变过程中温度变化规律的实验研究[J]. 爆炸与冲击, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06
引用本文: 刘永贵, 唐志平, 崔世堂. TiNi合金冲击相变过程中温度变化规律的实验研究[J]. 爆炸与冲击, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06
Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation[J]. Explosion And Shock Waves, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06
Citation: Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation[J]. Explosion And Shock Waves, 2014, 34(6): 679-684. doi: 10.11883/1001-1455(2014)06-0679-06

TiNi合金冲击相变过程中温度变化规律的实验研究

doi: 10.11883/1001-1455(2014)06-0679-06
详细信息
    作者简介:

    刘永贵(1982—), 男, 博士研究生

  • 中图分类号: O347.1

Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation

More Information
  • 摘要: 针对初始SME(shape memory effect)和PE(pseudo-elastic)状态TiNi合金试样,采用带有红外测温系统的SHPB冲击压缩装置,实时测量了冲击相变过程中两种材料试样表面瞬态温度,并根据实验结果计算了相应的温度变化。实验结果表明,冲击加载相变过程中,温度随相变应变的增大而升高,当应变最大时,温度最高;卸载过程中,对初始PE状态试样,温度降低,对初始SME状态试样,温度保持最高温度不变或降低,这同加载最高温度有关;卸载完成后,两种试样温度均高于其初始温度。计算温度结果表明,相变耗散功对加、卸载相变过程中温度变化的作用不可忽略。
  • 图  1  TiNi形状记忆合金试样的典型冲击压缩信号图

    Figure  1.  Raw data of shock compression of TiNi alloy specimen

    图  2  初始SME状态试样的应力应变关系和实时温度

    Figure  2.  Stress-strain curves and real-time temperature curves of SME specimens

    图  3  初始PE状态试样的应力应变关系和实时温度

    Figure  3.  Stress-strain curves and temperature curves of PE specimens

    图  4  初始SME状态试样的冲击相变过程温度变化

    Figure  4.  Temperature change of SME specimens in the process of phase transformation

    图  5  初始PE状态试样的冲击相变过程温度变化

    Figure  5.  Temperature change of PE specimens in the process of phase transformation

    表  1  TiNi合金基本热力学参数

    Table  1.   Properties of TiNi alloy in the experiment

    状态ρ/(kg·m-3)L/(J·g-1)cp(J·g-1·℃-1)Ms/℃Mf/℃As/℃Af/℃
    SME6 45012.900.5013.215.446.252.3
    PE6 4508.770.45-27.4-48.5-26.6-9.2
    下载: 导出CSV

    表  2  实验的参数和主要结果

    Table  2.   Experimental parameters and main results

    状态实验v0/(m·s-1)σt/MPaεmεr
    14.6115.80.0150.021
    SME27.5115.80.0270.024
    312.7115.80.0420.033
    410.2589.50.0120.006
    PE514.5589.50.0300.010
    617.8589.50.0470.012
    下载: 导出CSV

    表  3  测量和计算的温度

    Table  3.   Measured and calculated temperatures

    状态实验测量计算
    θm/℃θu/℃θ1/℃θ2/℃θm/℃θu/℃
    130.430.41.08.033.033.0
    SME237.535.52.213.339.536.8
    348.041.04.620.048.642.2
    433.325.62.75.332.025.1
    PE543.330.27.410.642.030.8
    651.232.510.916.651.533.9
    下载: 导出CSV
  • [1] Shaw J A, Kyriakides S. Thermo-mechanical aspects of NiTi[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8): 1243-1281.
    [2] Vitiello A, Giorleo G, Morace R E. Analysis of thermo-mechanical behaviour of Nitinol wires with high strain rates[J]. Smart Materials and Structures, 2005, 14(1): 215-221.
    [3] Lim T J, McDowell D L. Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(3): 651-676.
    [4] Helm D, Haupt P. Thermomechanical behavior of shape memory alloys[C]//Lynch S. Proc of SPIE's 8th Annual International Symposium on Smart Structures and Materials. 2001: 302-313.
    [5] Corneliu C. Shape memory alloys[M]. 2010: 17-40.
    [6] Morin C, Moumni Z, Zaki W. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling[J]. International Journal of Plasticity, 2011, 27: 1959-1980.
    [7] Gadaj S P, Nowacki W K, Pieczyska E A. Temperature evolution in deformed shape memory alloy[J]. Infrared Physics & Technology, 2002, 43(3): 151-155.
    [8] Chen Wei-nong, Song Bo. Temperature dependence of a NiTi shape memory alloy's superelastic behavior at a high strain rate[J]. Journal of Mechanics of Materials and Structures, 2006, 1(2): 339-356.
    [9] Hodowany K R. On the conversion of plastic work into heat[D]. California Institute of Technology, 1997.
    [10] Mason J J, Rosakis A J, Ravichandran G. On the strain and strain rate dependence of the fraction of plastic work converted into heat: An experimental study using high speed infrared detectors and the Kolsky bar[J]. Mechenics of Materials, 1994, 17(2): 135-145.
    [11] Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251-283.
    [12] 刘永贵, 唐志平, 崔世堂.冲击载荷下瞬态温度的实时测量方法[J].爆炸与冲击, 2014, 34(4): 471-476.

    Liu Yong-gui, Tang Zhi-ping, Cui Shi-tang. Real-time measuring methods for transient temperature under shock loading[J]. Explosion and Shock Waves, 2014, 34(4): 471-476.
    [13] 王礼立.应力波基础[M].北京: 国防工业出版社, 2005: 51-55.
    [14] Jy R D.红外系统原理[M].北京: 国防工业出版社, 1975.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  3455
  • HTML全文浏览量:  331
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-25
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回