[1] |
Zeldovich I B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases[J]. Soviet Physics: Technical Physics, 1956, 1(8): 1689-1713.
|
[2] |
Mitrofanov V V, Soloukhin R I. The diff'raction of mutifront detonation waves[J]. Soviet Physics: Doklady, 1965, 9(12): 1055-1058.
|
[3] |
Soloukhin R I, Ragland K W. Ignition processes in expanding detonations[J]. Combustion and Flame, 1965, 13(3): 295-302.
|
[4] |
Murray S B, Lee J H. On the transformation of planar detonation to cylindrical detonation[J]. Combustion and Flame, 1983, 52: 269-289.
|
[5] |
Smolinska A, Khasainov B, Virot V, ea al. Detonation diffraction from tube to space via frontal obstacle[C]//Proceedings of the Fourth European Combustion Meeting. Vienna, Austria, 2009.
|
[6] |
Pintgen F, Shepherd J E. Detonation diffraction in gases[J]. Combustion and Flame, 2009, 156(3): 665-677.
|
[7] |
Guo C M, Wang C J, Xu S L, ea al. Cellular pattern evolution in gaseous detonation diffraction in a 90°-branched channel[J]. Combustion and Flame, 2007, 148(3): 89-99.
|
[8] |
Wang C J, Xu S L, Guo C M. Gaseous detonation propagation in a bifurcated tube[J]. Journal of Fluid Mechanics, 2008, 599: 81-110.
|
[9] |
Gui M Y, Fan B C. Wavelet structure of wedge-induced oblique detonation waves[J]. Combustion Science and Technology, 2012, 184(10/11): 1456-1470.
|
[10] |
Yi T H, Wilson D R, Lu F K. Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber[R]. Arlington, Texas, USA: University of Texas at Arlington, 2004.
|
[11] |
潘振华, 范宝春, 归明月, 等.流动系统中爆轰波传播特性的数值模拟[J].爆炸与冲击, 2010, 30(6): 593-597.Pan Zhen-hua, Fan Bao-chun, Gui Ming-yue, et al. Numerical study of detonation wave propagation in a flow system[J]. Explosion and Shock Waves, 2010, 30(6): 593-597.
|
[12] |
Ishii K, Kataoka H, Kojima T. Initiation and propagation of detonation waves in combustible high speed flows[J]. Proceedings of Combustion Institute, 2009, 32(2): 2323-2330.
|
[13] |
Oran E S, Young T R, Boris J P, et al. Weak and strong ignition I: Numerical simulation of shock tube experiments[J]. Combustion and Flame, 1982, 48: 135-148.
|
[14] |
Zhong X L. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1): 19-31.
|
[15] |
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(2): 202-228.
|
[16] |
Radhakrishnan K, Hindmarsh A C. Description and use of LSODE, the livermore solver for ordinary differential equations, UCRL-ID-113855[R]. Washington, USA: NASA, 1993.
|
[17] |
Oran E S, Weber J W, Stefaniw E I, et al. Numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model[J]. Combustion and Flame, 1998, 113(1/2): 147-163.
|
[18] |
Eckett C A. Numerical and analytical studies of the dynamic of gaseous detonation[D]. CA, USA: California Institute of Technology, 2001.
|