爆炸焊接界面波物质点法三维数值模拟

王宇新 李晓杰 王小红 闫鸿浩 孙明

王宇新, 李晓杰, 王小红, 闫鸿浩, 孙明. 爆炸焊接界面波物质点法三维数值模拟[J]. 爆炸与冲击, 2014, 34(6): 716-722. doi: 10.11883/1001-1455(2014)06-0716-07
引用本文: 王宇新, 李晓杰, 王小红, 闫鸿浩, 孙明. 爆炸焊接界面波物质点法三维数值模拟[J]. 爆炸与冲击, 2014, 34(6): 716-722. doi: 10.11883/1001-1455(2014)06-0716-07
Wang Yu-Xin, Li Xiao-Jie, Wang Xiao-Hong, Yan Hong-hao, Sun Ming. Numerical simulation on interfacial wave formation in explosive welding using material point method[J]. Explosion And Shock Waves, 2014, 34(6): 716-722. doi: 10.11883/1001-1455(2014)06-0716-07
Citation: Wang Yu-Xin, Li Xiao-Jie, Wang Xiao-Hong, Yan Hong-hao, Sun Ming. Numerical simulation on interfacial wave formation in explosive welding using material point method[J]. Explosion And Shock Waves, 2014, 34(6): 716-722. doi: 10.11883/1001-1455(2014)06-0716-07

爆炸焊接界面波物质点法三维数值模拟

doi: 10.11883/1001-1455(2014)06-0716-07
基金项目: 国家自然科学基金项目(10972051,11272081)
详细信息
    作者简介:

    王宇新(1972—), 男, 博士, 副教授

  • 中图分类号: O389

Numerical simulation on interfacial wave formation in explosive welding using material point method

Funds: Supported bythe National Natural Science Foundationof China (10972051, 11272081)
More Information
  • 摘要: 基于冲击动力学和爆炸焊接理论,采用物质点法对爆炸焊接界面波的形成进行三维数值模拟。通过数值模拟结果与爆炸焊接实验结果的对比,对复合界面材料的塑性流动变形以及界面波形成的机理进行探讨。结果表明:界面波是因为在碰撞点处的金属材料发生熔化并产生涡旋流动形成的;同时也说明采用物质点法模拟爆炸焊接界面波的形成是可行的。
  • 图  1  爆炸焊接布置简图

    Figure  1.  Distribution pattern of explosive welding

    图  2  爆炸焊接过程示意图

    Figure  2.  The process of explosive welding

    图  3  爆炸焊接数值计算模型示意图

    Figure  3.  Calculation model of explosive welding

    图  4  爆炸焊接数值计算模型前处理

    Figure  4.  Preprocess of explosive welding

    图  5  爆炸焊接复合界面波的形成

    Figure  5.  Interfacial wave formation of explosive welding

    图  6  爆炸焊接复合界面波x-y中间剖面

    Figure  6.  Interfacial wave formation of explosive welding at x-ysection

    图  7  爆炸焊接x-y中间剖面等效应力

    Figure  7.  Effective stress of explosive welding at x-ysection

    图  8  爆炸焊接x-y中间剖面压力

    Figure  8.  Pressure of explosive welding at x-ysection

    图  9  爆炸焊接复合界面波状态金相照片

    Figure  9.  Metallograph of interfacial wave formation

  • [1] 邵丙璜, 张凯.爆炸焊接原理及工业应用[M].大连: 大连工学院出版社, 1987: 1-5.
    [2] Grignon F, Benson D, Vecchio K S. Explosive welding of aluminum to aluminum: Analysis, computations and experiments[J]. International Journal of Impact Engineering, 2004, 30(10): 1333-1351.
    [3] Kahraman N, Gülenc B, Findik F. Joining of titanium/stainless steel by explosive welding and effect on interface[J]. Journal of Materials Processing Technology, 2005, 169(2): 127-133.
    [4] 张登霞, 李国豪, 周之洪, 等.材料强度在爆炸焊接界面波形成过程中的作用[J].力学学报, 1984, 16(1): 73-80.

    Zhang Deng-xia, Li Guo-hao, Zhou Zhi-hong, et al. Effect of material strength on forming process of explosive welding interface wave[J]. Acta Mechanica Sinica, 1984, 16(1): 73-80.
    [5] Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-186.
    [6] Chen Z, Hu W, Shen L. An evaluation of the MPM for simulating dynamic failure with damage diffusion[J]. Engineering Fracture Mechanics, 2002, 69(17): 1873-1890.
    [7] Wang Y X, Beom H G, Sun M, et al. Numerical simulation of explosive welding using the material point method[J]. International Journal of Impact Engineering, 2011, 38: 51-60.
    [8] Wiezckowski Z. The material point method in large strain engineering problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41): 4417-4438.
    [9] Hu W, Chen Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM[J]. International Journal of Impact Engineering, 2006, 32(12): 2066-2096.
    [10] 黄鹏, 张雄, 马上.基于OpenMP的三维显式物质点法并行化研究[J].计算力学学报, 2010, 27(1): 21-27.

    Huang Peng, Zhang Xiong, Ma Shang. Parallelization of 3Dexplicit material point method using OpenMP[J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 21-27.
    [11] Zhang D Z, Zou Q S, VanderHeyden W B. Material point method applied to multiphase flows[J]. Journal of Computational Physics, 2008, 227(6): 3159-3173.
    [12] Sulsky D, Schreyer L. MPM simulation of dynamic material failure with a decohesion constitutive model[J]. European Journal of Mechanics: A/Solids, 2004, 23(3): 423-445.
    [13] Li X J, Mo F, Wang X H. Numerical study on mechanism of explosive welding[J]. Science and Technology of Welding and Joining, 2012, 17(1): 36-41.
    [14] Daridon L, Oussouaddi O, Ahzi S. Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models[J]. International Journal of Solids and Structures, 2004, 41(11/12): 3109-3124.
    [15] Steinberg D J. Equation of state and strength properties of selected materials[R]. Livermore: Livermore National Laboratory, 1996.
    [16] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
  • 加载中
图(9)
计量
  • 文章访问数:  2979
  • HTML全文浏览量:  397
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-07-15
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回