Explosion-proof structures and delay detonation control of tandem explosively formed projectile charges
-
摘要: 结合串联战斗部的特点,提出了一种两级爆炸成型弹丸(explosively formed projectile, EFP)装药的串联装药结构。利用LS-DYNA有限元软件分析了不同隔爆体及延时起爆对后级EFP成型的影响,进行了不同隔爆结构和延时匹配的串联EFP侵彻45钢靶实验。实验结果表明:优化后的串联EFP装药的侵彻深度,已经达到分2次单级连续侵彻之和的96.7%,后级装药的侵彻能力得到有效提高。Abstract: According to the analysis of the tandem warhead characteristics, we proposed a new tandem shaped charge structure composed of two explosively-formed projectile charges with the same structure.By using the finite element software LS-DYNA, the effect of different explosion-proof bodies and different delay control on the forming process of the postpositive EFP charge were analyzed.Based on the above results, we conducted experiments for tandem EFP penetration with different delay time.The experimental results show that the penetration depth of the optimized tandem EFP charge can reach 96.7 percent of the sum depth that penetrated by a single EFP charge at twice.The penetration ability of the postpositive EFP charge is greatly improved.
-
Key words:
- mechanics of explosion /
- explosion-proof body /
- delay control /
- tandem EFP charge /
- LS-DYNA
-
表 1 JH-2炸药计算参数
Table 1. Computational parameters for JH-2
ρ/(g·cm-3) v/(m·s-1) pCJ/GPa A/GPa E0/(J·m-3) B R1 R2 ω 1.70 8 400 30 56.4 10.0 6.801 4.1 1.3 0.36 表 2 紫铜和聚氨酯泡沫计算参数
Table 2. Computational parameters for copper liner
ρ/(g·cm-3) C/(m·s-1) S1 S2 S3 γ0 a E0 8.96 4 750 3.8 2.74 0.125 1.346 0.34 0.0 表 3 聚氨酯泡沫计算参数
Table 3. Computational parameters for polyurethane foam
ρ/(g·cm-3) C/(m·s-1) S1 S2 S3 γ0 a E0 0.05 886 0.78 0.0 0.0 1.55 0.00 0.0 表 4 EFP侵彻钢靶数值模拟与实验数据
Table 4. Simulational and experimental results of EFP penetrating steel targets
H/mm h/D d/D 模拟值 实验值 模拟值 实验值 150 0.73 0.74 0.557 0.563 180 0.80 0.78 0.525 0.530 210 0.85 0.86 0.498 0.495 240 0.89 0.88 0.477 0.472 270 0.90 0.89 0.460 0.454 300 0.90 0.90 0.455 0.451 表 5 串联EFP装药侵彻数值模拟结果
Table 5. Simulation results of tandem EFP penetration
Δt/μs h/mm h/D d/mm d/D 0 92 1.415 22.2 0.341 10 103 1.584 21.6 0.332 20 115 1.769 21.4 0.329 25 104 1.600 21.7 0.327 30 98 1.507 21.3 0.334 表 6 串联EFP装药侵彻钢靶实验结果
Table 6. Experimental results of tandem EFPs penetrating steel targets
隔爆结构 h/mm d/mm 圆柱形 82 15.2 锥口向上 60 16.6 锥口向下 98 16.3 表 7 串联EFP装药侵彻钢靶结果
Table 7. Experimental results of tandem EFPs penetrating steel targets
编号 Δt/μs h/mm d/mm A1 0 94 21.4 A2 0 95 21.3 A3 10 105 21.0 A4 10 102 21.2 A5 20 117 20.6 A6 20 115 20.8 A7 25 107 20.4 A8 25 108 20.3 A9 30 100 20.3 A10 30 102 20.2 B1 121 21.6 B2 119 21.8 -
[1] 徐浩铭, 顾文彬, 刘建青, 等.串联聚能装药隔爆结构设计数值模拟和实验研究[J].兵工学报, 2014, 35(2): 170-175.Xu Hao-ming, Gu Wen-bin, Liu Jian-qing, et al. Numerical simulation and experimental study on explosion-proof structure design of the tandem shaped charge[J]. Acta Armamentarii, 2014, 35(2): 170-175. [2] 张先锋, 陈惠武.破爆型串联战斗部前级对后级影响数值模拟[J].弹箭与制导学报, 2006, 26(2): 66-68.Zhang Xian-feng, Chen Hui-wu. A computational study of blast effect on traveling projectile of tandem warhead[J]. Journal of Projectile, Rockets Missiles and Guidance, 2006, 26(2): 66-68. [3] 王树有, 陈惠武, 赵有守.串联攻坚战斗部前级爆轰场对后级影响分析[J].火炸药学报, 2006, 19(2): 4-6.Wang Shu-you, Chen Hui-wu, Zhao You-shou. Analysis of following projectile effected by precursory charge of tandem warhead[J]. Chinese Journal of Explosives & Propellants, 2006, 19(2): 4-6. [4] 曾必强, 姜春兰, 严翰新, 等.串联攻坚战斗部前级爆轰场对随进弹随进影响分析[J].兵工学报, 2010, 31(1): 162-166.Zeng Bi-qiang, Jiang Chun-lan, Yan Han-xin, et al. Analysis for effects of precursory detonation field on projectile following course in tandem warhead[J]. Acta Armamentarii, 2010, 31(1): 162-166. [5] 涂侯杰, 恽寿榕, 赵衡阳.破爆型串联战斗部第一级爆炸对第二级影响的研究[J].兵工学报, 1994(3): 18-22.Tu Hou-jie, Yun Shou-rong, Zhao Heng-yang. Blast effect on the follow-through charge of a tandem warhead[J]. Acta Armamentarii, 1994(3): 18-22. [6] 王成, 恽寿榕, 黄风雷.同口径破-破型串联装药战斗部的试验研究[J].弹箭与制导学报, 2002, 22(2): 61-65.Wang Cheng, Yun Shou-rong, Huang Feng-lei. Experiment study on the forward charge blast effect on the follow-through charge of tandem warhead[J]. Journal of Projectile, Rockets Missiles and Guidance, 2002, 22(2): 31-34. [7] 顾文彬, 刘建青, 唐勇等.球缺型EFP战斗部结构优化设计研究[J].南京理工大学学报:自然科学版, 2008, 32(2): 165-168.Gu Wen-bin, Liu Jian-qing, Tang Yong, et al. Optimizing design of EFP warhead with hemispherical liner[J]. Journal of Nanjing University of Science and Technology: Natural Science, 2008, 32(2): 165-168. [8] 徐浩铭, 顾文彬, 刘建青, 等.隔爆体形状对串联战斗部后级影响研究[J].火工品, 2013(6): 23-26.Xu Hao-ming, Gu Wen-bin, Liu Jian-qing, et al. Study on postpositive charge of tandem warhead effected by explosion-proof nody shape[J]. Initiators & Pyrotechnics, 2013(6): 23-26. [9] 吴晗玲, 段卓平, 汪永庆.杆式射流形成的数值模拟研究[J].爆炸与冲击, 2006, 26(4): 328-332.Wu Han-ling, Duan Zhuo-ping, Wang Yong-qing. Simulation investigation of rod-like jets[J]. Explosion and Shock Waves, 2006, 26(4): 328-332. [10] 桂毓林, 于川, 刘仓理, 等.带尾翼的翻转型爆炸成形弹丸的三维数值模拟[J].爆炸与冲击, 2005, 25(4): 313-318.Gui Yu-lin, Yu Chuan, Liu Cang-li, et al. 3D simulation of over-turned explosively formed projectile(EFP)with star-shaped fins[J]. Explosion and Shock Waves, 2005, 25(4): 313-318. [11] 白金泽. LS-DYNA3D理论基础与实例分析[M].科学出版社, 2005: 74. [12] 时党勇, 李裕春, 张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].清华大学出版社, 2005: 250.