Prediction of peak pressure in the explosion-vented vessel with a venting duct based on support vector machine
-
摘要: 为了预测导管泄爆容器压力峰值,根据文献提取出影响导管泄爆容器压力峰值的因素,将这些因素作为输入变量,采用支持向量机算法对压力峰值与各因素的内在关系进行了研究,建立导管泄爆容器压力峰值预测模型,对模型的有效性及预测能力进行了验证。将预测模型与现有经验公式进行比较,表明支持向量机模型具有较好的预测能力,且预测能力优于经验公式。Abstract: To predict the peak pressure in the explosion-vented vessel with a venting duct, the influencing factors on the peak pressure were abstracted from the experimental data in literatures.The abstracted factors were deployed as the inputs to the support vector machine(SVM), and the corresponding peak pressures were used as the outputs.Thereby, the SVM model was developed.The validity of the SVM model was checked by comparing the predictive capacities between the SVM model and the empirical formula.The results show that the SVM model has a better predictive capacity than the empirical formula.
-
Key words:
- mechanics of explosion /
- peak pressure /
- support vector machine /
- explosion-vented vessel /
- venting duct /
-
-
表 1 容器带导管泄爆实验数据
Table 1. The experimental values for vessel venting by duct
No. KG/(MPa·m·s-1) φ/% 点火位置 Lt/m Dt/m V/m3 pv/kPa p0/kPa pred/kPa 1 10.0 4 1 0.60 0.016 0.003 66 101 101 145 2 10.0 4 1 0.60 0.021 0.003 66 101 101 117 3 10.0 4 1 0.60 0.036 0.003 6 101 101 127 4 10.0 4 1 1.10 0.016 0.003 66 101 101 180 5 10.0 4 1 1.10 0.021 0.003 66 101 101 145 6 10.0 4 1 1.10 0.036 0.003 66 101 101 192 7 10.0 4 1 2.60 0.016 0.003 66 101 101 192 8 10.0 4 1 2.60 0.021 0.003 66 101 101 155 9 10.0 4 1 2.60 0.036 0.003 66 101 101 192 10 10.0 4 1 2.60 0.053 0.003 66 101 101 211 11 10.0 4 2 1.70 0.036 0.003 66 101 101 201 12 10.0 4 2 1.70 0.036 0.003 66 131 101 216 13 10.0 4 2 1.70 0.036 0.003 66 192 101 266 14 10.0 4 2 1.70 0.036 0.003 66 331 101 337 15 10.0 4 1 1.70 0.036 0.003 66 101 101 176 16 10.0 4 1 1.70 0.036 0.003 66 133 101 188 17 10.0 4 1 1.70 0.036 0.003 66 184 101 181 18 10.0 4 3 1.70 0.036 0.003 66 212 101 127 19 10.0 4 3 1.70 0.036 0.003 66 325 101 224 20 10.0 5 2 1.00 0.844 6 2.600 111 101 19 21 10.0 5 2 2.00 0.844 6 2.600 111 101 30 22 10.0 5 2 3.00 0.844 6 2.600 111 101 39 23 10.0 5 1 3.00 0.844 6 2.600 111 101 101 24 8.4 5 2 25.00 0.500 10.000 111 101 410 25 8.4 5 2 25.00 0.500 10.000 106 101 280 26 8.4 5 2 4.00 0.200 2.000 116 101 430 27 8.4 5 2 10.00 0.200 2.000 116 101 520 28 8.4 5 2 10.00 0.380 2.000 116 101 215 29 8.4 5 2 1.83 0.050 0.027 121 101 500 30 8.4 5 2 2.35 0.050 0.027 126 101 440 31 8.4 5 2 2.35 0.050 0.027 126 101 350 32 8.4 5 2 2.35 0.050 0.027 266 101 190 33 8.4 5 2 1.83 0.050 0.027 243 101 440 34 14.0 18 2 0.16 0.035 0.022 101 101 300 35 14.0 18 2 0.32 0.035 0.022 101 101 482 36 14.0 18 2 0.54 0.035 0.022 101 101 565 37 14.0 18 2 0.80 0.035 0.022 101 101 482 38 14.0 18 2 1.40 0.035 0.022 101 101 513 39 14.0 18 2 1.75 0.035 0.022 101 101 518 40 14.0 18 2 2.80 0.035 0.022 101 101 214 41 14.0 18 2 3.50 0.035 0.022 101 101 464 42 14.0 18 2 4.91 0.035 0.022 101 101 357 43 14.0 18 2 6.14 0.035 0.022 101 101 375 44 14.0 18 2 6.75 0.035 0.022 101 101 339 45 14.0 18 2 2.50 0.025 0.022 101 101 500 46 14.0 18 2 2.50 0.025 0.022 101 101 473 47 14.0 18 2 2.50 0.025 0.022 101 101 420 48 14.0 10 2 2.50 0.025 0.020 101 101 82 49 14.0 12 2 2.50 0.025 0.020 101 101 238 50 14.0 14 2 2.50 0.025 0.020 101 101 291 51 14.0 16 2 2.50 0.025 0.020 101 101 347 52 14.0 18 2 2.50 0.025 0.020 101 101 400 53 14.0 20 2 2.50 0.025 0.020 101 101 430 54 14.0 22 2 2.50 0.025 0.020 101 101 482 55 14.0 25 2 2.50 0.025 0.020 101 101 500 56 14.0 30 2 2.50 0.025 0.020 101 101 82 57 14.0 20 2 0.04 0.025 0.020 101 101 368 58 14.0 20 2 0.17 0.025 0.020 101 101 368 59 14.0 20 2 0.30 0.025 0.020 101 101 671 60 14.0 20 2 0.61 0.025 0.020 101 101 636 61 14.0 20 2 1.26 0.025 0.020 101 101 457 62 14.0 20 2 2.50 0.025 0.020 101 101 400 表 2 泄爆压力峰值的SVM检验样本参数
Table 2. Prediction samples for vessel vented through duct
No. KG/
(MPa·m·s-1)φ/% 点火位置 Lt/m Dt/m V/m3 pv/kPa p0/kPa pred/kPa 1 10.0 4 1 0.60 0.036 0.003 6 101 101 127 2 10.0 4 1 2.60 0.036 0.003 66 101 101 192 3 10.0 5 2 3.00 0.844 6 2.600 111 101 39 4 14.0 18 2 1.40 0.035 0.022 101 101 513 5 14.0 14 2 2.50 0.025 0.020 101 101 291 6 14.0 18 2 6.75 0.035 0.022 101 101 339 7 10.0 4 2 1.70 0.036 0.003 66 192 101 266 8 14.0 18 2 2.50 0.025 0.022 101 101 420 9 10.0 4 1 1.10 0.021 0.003 66 101 101 145 10 14.0 18 2 2.50 0.025 0.022 101 101 473 表 3 泄爆压力峰值预测值与检验样本值的对比
Table 3. Predicted values of peak pressure in vessel vented by duct
No. pred/kPa 经验公式 支持向量机 p/kPa Δp/kPa ε/% p/kPa Δp/kPa ε/% 1 127 278 151 118.90 155.6 28.6 22.52 2 192 410 218 113.54 187.7 -4.3 2.24 3 39 31.5 -7.5 19.23 45.5 6.5 16.67 4 513 450 -63 12.28 450.8 -62.2 12.13 5 291 480 189 64.95 295.0 4.0 1.37 6 339 534 195 57.52 333.5 -5.5 1.62 7 266 920 654 245.86 285.5 19.5 7.33 8 420 440 20 4.76 435.7 15.7 3.74 9 145 541 396 273.10 154.5 9.5 6.55 10 473 543 70 14.80 435.3 -37.7 7.97 -
[1] American National Standards Institute. NFPA 68: Standard on explosion protection by deflagration venting[S]. Quincy: National Fire Protection Association, 2007. [2] Verein Deutscher Ingenieure. VDI 3673, PartⅠ: Pressure venting of dust explosions[S]. Dusseldorf: Verien Deutscher Ingenieure, 1995. [3] 师喜林, 王志荣, 蒋军成.球形容器内气体的泄爆过程[J].爆炸与冲击, 2009, 29(4): 390-394.Shi Xi-lin, Wang Zhi-rong, Jiang Jun-cheng. Explosion-vented processes for methane-air premixed gas in spherical vessels with venting pipes[J]. Explosion and Shock Waves, 2009, 29(4): 390-394. [4] Ponizy B, Leyer J C. Flame dynamics in a vented vessel connected to a duct: 1. Mechanism of vessel-duct interaction[J]. Combustion and Flame, 1999, 116: 259-271. [5] Ponizy B, Leyer J C. Flame dynamics in a vented vessel connected to a duct: 2. Influence of ignition site, membrane rupture, and turbulence[J]. Combustion and Flame, 1999, 116: 272-281. [6] Ferrara G, Willacy S K, Phylaktou H N, et al. Venting of gas explosion through relief ducts: Interaction between internal and external explosions[J]. Journal of Hazardous Materials, 2008, 155: 358-368. [7] Benedetto A D, Russo P, Salzano E. The design of duct venting of gas explosions[J]. Process Safety Progress, 2008, 27(2): 164-172. [8] Bartknecht W, Zwahlen G. Explosionsschutz[J]. Grundlagen und Anwendung, 1993: 470-535. [9] Vapnik V N. The nature of statistical learning theory[M]. Springer, 1995. [10] 钱渊, 宋军, 傅柯.基于支持向量机补偿的灰色模型网络流量预测[J].探测与控制学报, 2012, 34(1): 69-72.Qian Yuan, Song Jun, Fu Ke. Grey model of network traffic prediction based on support vector machines[J]. Journal of Detection and Control, 2012, 34(1): 69-72. [11] 杜颖, 卢继平, 李青, 等.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术, 2008, 32(15): 62-66.Du Ying, Lu Ji-ping, Li Qing, et al. Short-term wind speed forecasting of wind farm based on least square-support vector machine[J]. Power System Technology, 2008, 32(15): 62-66. [12] Esen H, Inalli M, Sengur A, et al. Modeling aground-coupled heat pump system by a support vector machine[J]. Renewable Energy, 2008, 33(8): 1814-1823. [13] Pan Yong, Jiang Jiang-jun, Wang Rui, et al. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine[J]. Journal of Hazardous Materials, 2009, 168: 962-969. [14] Cai Jie-jin. Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon[J]. Annals of Nuclear Energy, 2012, 43: 114-122. [15] 孟倩, 王洪权, 王永胜, 等.煤自燃极限参数的支持向量机预测模型[J].煤炭学报, 2009, 34(11): 1489-1493.Meng Qian, Wang Hong-quan, Wang Yong-sheng, et al. Predicting limit parameters of coal self-ignition based on support vector machine[J]. Journal of China Coal Society, 2009, 34(11): 1489-1493. [16] 杨斌, 匡立春, 孙中春.一种用于测井油气层综合识别的支持向量机方法[J].测井技术, 2005, 29(6): 511-514.Yang Bin, Kuang Li-chun, Sun Zhong-chun. On support vector machines method to identify oil and gas zone with logging and mudlog information[J]. Well Logging Technology, 2005, 29(6): 511-514.