球形重质气体物理爆炸特性

薛大文 陈志华 韩珺礼

薛大文, 陈志华, 韩珺礼. 球形重质气体物理爆炸特性[J]. 爆炸与冲击, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05
引用本文: 薛大文, 陈志华, 韩珺礼. 球形重质气体物理爆炸特性[J]. 爆炸与冲击, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05
Xue Da-wen, Chen Zhi-hua, Han Jun-li. Physical characteristics of circular heavy gas cloud explosion[J]. Explosion And Shock Waves, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05
Citation: Xue Da-wen, Chen Zhi-hua, Han Jun-li. Physical characteristics of circular heavy gas cloud explosion[J]. Explosion And Shock Waves, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05

球形重质气体物理爆炸特性

doi: 10.11883/1001-1455(2014)06-0759-05
基金项目: 国家自然科学基金面上项目(11272156); 2012年江苏省研究生科研创新计划项目(CXZZ12_0179)
详细信息
    作者简介:

    薛大文(1986—), 男, 博士研究生

  • 中图分类号: O381

Physical characteristics of circular heavy gas cloud explosion

Funds: Supported bythe National Natural Science Foundationof China (11272156)
More Information
  • 摘要: 基于大涡模拟方法,结合高阶混合格式,对高压重质的SF6球形气云在空气中爆炸进行了模拟。数值模拟表明,爆炸产生的激波经过气体分界面时分为透射激波以及反射稀疏波,透射激波导致气体分界面处Richtmyer-Meshkov失稳增强,从而加速了2种气体的混合,而反射的稀疏波经过汇聚,在球心处形成二次激波,在该强激波作用下,流场区域基本呈现湍流形态。
  • 图  1  不同时刻密度等值面

    Figure  1.  Density isosurfaces shown at different times

    图  2  流场波系结构及界面随时间的变化

    Figure  2.  Evolution of the shock wave structure and interface in the flowfield

    图  3  径向压力变化

    Figure  3.  Pressure distributions along the radius at different times

    图  4  气体界面,透射激波以及稀疏波轨迹

    Figure  4.  Trajectories of gas interface, transmitted shock and reflected wave

    图  5  二次激波与流场作用过程

    Figure  5.  Processes of the interaction between reshock and the flowfield

  • [1] Taylor G I. The air wave surrounding an expanding sphere[J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1946, 186: 273-292.
    [2] Laumbach D D. Probstein R F. A point explosion in a cold exponential atmosphere: Part 2: Radiating flow[J]. Journal of Fluid Mechanics, 1970, 40(4): 833-858.
    [3] Singh L P, Ram S D, Singh D B. Analytical solution of the blast wave problem in a non-ideal gas[J]. Chinese Physics Letters, 2011, 28(11): 114303-114305.
    [4] Marble F E, Hendrics G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion processes[R]. AIAA 87-1880, 1987.
    [5] Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion Flame, 2007, 148(1/2): 4-47.
    [6] 孙晓晖, 陈志华, 张焕好.激波绕射碰撞加速诱导爆轰的数值研究[J].爆炸与冲击, 2011, 31(4): 407-412.

    Sun Xiao-hui, Chen Zhi-hua, Zhang Huan-hao. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves[J]. Explosion and Shock Waves, 2011, 31(4): 407-412.
    [7] Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40.
    [8] Zabusky N. Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments[J]. Annual Review of Fluid Mechanics, 1999, 31: 495-536.
    [9] Brouillette M. The Richrmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468.
    [10] Zoldi C A. A numerical and experimental study of a shock-accelerated heavy gas cylinder[D]. New York: State University of New York, 2002:
    [11] Layes G, Métayer O Le. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion[J]. Physics of Fluids, 2007, 19: 042105.
    [12] 邹立勇, 刘金宏, 谭多望, 等.弱激波冲击无膜重气柱和气帘界面的实验研究[J].高压物理学报, 2010, 24(4): 241-247.

    Zou Li-yong, Liu Jin-hong, Tan Duo-wang, et al. Experimental study on the membraneless heavy gas cylinder and gas curtain interfaces impacted by a weak shock wave[J]. Chinesee Journal of High Pressure Physics, 2010, 24(4): 241-247.
    [13] Zheng J G, Lee T S, Winoto S H. Numerical simulation of Richtmyer-Meshkov instability driven by imploding shocks[J]. Mathematics and Computers in Simulation, 2008, 79(3): 749-762.
    [14] Pullin D I. A vortex-based model for the subgrid flux of a passive scalar[J]. Physics of Fluids, 2000, 12(9): 2311-2319.
    [15] Hill D J, Pullin D I. Hybrid tuned center-difference-WENO method for large-eddy simulation in the presence of strong shocks[J]. Journal of Computational Physics, 2004, 194(2): 435-450.
    [16] Jourdan G, Hounas L. High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability[J]. Physical Review Letter, 2005, 95(20): 4502-4505.
    [17] 刘金宏, 邹立勇, 柏劲松, 等.激波冲击下air/SF6界面的Richtmyer-Meshkov不稳定性[J].爆炸与冲击, 2011, 31(2): 135-140.

    Liu Jin-hong, Zou Li-yong, Bai Jing-song, et al. Richtmyer-Meshkov instability of shock-accelerated air/SF6 interfaces[J]. Explosion and Shock Waves, 2011, 31(2): 135-140.
  • 加载中
图(5)
计量
  • 文章访问数:  3023
  • HTML全文浏览量:  385
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-03
  • 修回日期:  2013-09-05
  • 刊出日期:  2014-11-25

目录

    /

    返回文章
    返回