泡沫铝材料动态本构参数的实验确定

丁圆圆 杨黎明 王礼立

丁圆圆, 杨黎明, 王礼立. 泡沫铝材料动态本构参数的实验确定[J]. 爆炸与冲击, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08
引用本文: 丁圆圆, 杨黎明, 王礼立. 泡沫铝材料动态本构参数的实验确定[J]. 爆炸与冲击, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08
Ding Yuan-yuan, Yang Li-ming, Wang Li-li. Experimental determination of dynamic constitutive parameters for aluminum foams[J]. Explosion And Shock Waves, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08
Citation: Ding Yuan-yuan, Yang Li-ming, Wang Li-li. Experimental determination of dynamic constitutive parameters for aluminum foams[J]. Explosion And Shock Waves, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08

泡沫铝材料动态本构参数的实验确定

doi: 10.11883/1001-1455(2015)01-0001-08
基金项目: 国家自然科学基金项目(11032001);宁波大学王宽诚幸福基金项目
详细信息
    作者简介:

    丁圆圆(1987—), 男, 硕士研究生

    通讯作者:

    杨黎明, yangliming@nbu.edu.cn

  • 中图分类号: O347

Experimental determination of dynamic constitutive parameters for aluminum foams

  • 摘要: 基于泡沫材料的动态刚性-线性硬化塑性-刚性卸载(D-R-LHP-R)模型,结合连续性方程,动量守恒方程及刚体的运动方程,得到了激波在泡沫材料中的量纲一消失位置Xs/L0和动态屈服应力Yi、激波波速cp、冲击初始应变εi之间的如下关系式: $\frac{X_{\mathrm{s}}}{L_{0}}=\exp \left(-\frac{\rho_{0} c_{\mathrm{p}} v_{\mathrm{i}}}{Y}\right)=\exp \left(1-\frac{\sigma_{\mathrm{i}}}{Y}\right)=\exp \left(-\frac{\rho_{0} c_{\mathrm{p}}^{2} \varepsilon_{\mathrm{i}}}{Y}\right)$ 采用Taylor-Hopkinson装置进行实验,当直接测得泡沫铝试样密度ρ0、边界初始应力σi、初始打击速度vi、泡沫铝杆原长L0及激波在泡沫铝杆中消失长度Xs后,利用方程式(a)可反演求得D-R-LHP-R模型下的泡沫铝动态应力应变曲线。最后通过与泡沫铝准静态实验数据对比,表明该泡沫铝是应变率敏感性材料。
  • 图  1(a)  D-R-LHP-R模型

    Figure  1(a).  D-R-LHP-R model

    图  1(b)  Taylor实验模型

    Figure  1(b).  Taylor experimental device

    图  2  Taylor-Hopkinson实验装置

    Figure  2.  Taylor-Hopkinson experimental device

    图  3  泡沫铝中激波停止的位置

    Figure  3.  Stopped location of shock wave in the aluminum foams

    图  4  Taylor-Hopkinson实验测得的边界应力

    Figure  4.  Boundary stress measured by the Taylor-Hopkinson experiment

    图  5  Taylor-Hopkinson实验测得的ln(Xs/L0) -vi曲线

    Figure  5.  Relationship of ln(Xs/L0) and vi in the Taylor- Hopkinson experiment for the aluminum foams

    图  6  泡沫铝动态屈服应力随密度的变化

    Figure  6.  Experimental dynamic yield stress vs. density of aluminum foams

    图  7  泡沫铝Taylor-Hopkinson实验测得的ln(Xs/L0)-σi曲线

    Figure  7.  Relationship of ln(Xs/L0) and σi in the Taylor- Hopkinson experiment for the aluminum foams

    图  8  泡沫铝Taylor-Hopkinson实验测得的激波波速cp随密度ρ0的变化

    Figure  8.  Relation of shock wave velocity cp and density ρ0 in the Taylor-Hopkinson experiment for the aluminum foams

    图  9  泡沫铝Taylor-Hopkinson实验测得的εi -ln(Xs/L0)曲线

    Figure  9.  Relation of initial strain εi and ln(Xs/L0) in the Taylor-Hopkinson experiment for the aluminum foams

    图  10  不同密度范围泡沫铝材料的D-R-PLH-L模型和准静态实验对比

    Figure  10.  Comparisons of stress between D-R-LHP-R model and quasi-static experiment for the aluminum foams with different density

    图  11  通过D-R-LHP-R模型和Taylor-Hopkinson实验求得的边界应力对比

    Figure  11.  Comparisons of the boundary stress-time curves determined by D-R-LHP-R model and measured by the Taylor-Hopkinson experiment

  • [1] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminum alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. http://www.researchgate.net/publication/222567169_High_strain_rate_compressive_behaviour_of_aluminum_alloy_foams
    [2] Dannemann K A, James Lankford Jr. High strain rate compression of closed-cell aluminum foams[J]. Materials Science and Engineering, 2000, 293(1/2): 157-164. http://www.sciencedirect.com/science/article/pii/S0921509300012193
    [3] Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a closed-celled aluminium foam under dynamic loading[J]. Scripta Materialia, 1999, 40(8): 921-927. http://www.sciencedirect.com/science/article/pii/S135964629900038X
    [4] Montanini R. Measurement of strain rate sensitivity of aluminum foams for energy dissipation[J]. International Journal of Mechanical Sciences, 2005, 47(1): 26-42. http://www.sciencedirect.com/science/article/pii/S0020740304002942
    [5] Lopatnikov S L, Gama B A, Haque Md J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson impact experiment[J]. Composite Structure, 2003(61): 61-71. http://www.sciencedirect.com/science/article/pii/S0263822303000394
    [6] Shim V P W, Tay B Y, Stronge W J. Dynamic crushing of strain-softening cellular structures-A one-dimensional analysis[J]. Journal of Engineering Materials and Technology, 1990, 112(4): 398-405. http://jxb.oxfordjournals.org/external-ref?access_num=10.1115/1.2903349&link_type=DOI
    [7] Li Q M, Meng H. Attenuation or enhancement-A one-dimensional analysis on shock transmission in the solid phase of cellular material[J]. International Journal of Impact Engineering, 2002(27): 1049-1065. http://www.sciencedirect.com/science/article/pii/S0734743X02000167
    [8] Harrigan J J, Reid S R, Yaghoubi A S. The correct analysis of shocks in a cellular material[J]. International Journal of Impact Engineering, 2010, 37(8): 918-927. http://www.sciencedirect.com/science/article/pii/S0734743X0900061X
    [9] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. http://www.sciencedirect.com/science/article/pii/S0734743X9700016X
    [10] Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of Impact Engineering, 2004, 30(4): 421-445. http://www.sciencedirect.com/science/article/pii/S0734743X03000666
    [11] Harrigan J J, Reid S R, Tan P J, et al. High rate crushing of wood along the grain[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521-544. http://www.sciencedirect.com/science/article/pii/S0020740305000421
    [12] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part Ⅱ-'shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. http://www.ingentaconnect.com/content/el/00225096/2005/00000053/00000010/art00002
    [13] 胡时胜, 王悟, 潘艺, 等.泡沫材料的应变率效应[J].爆炸与冲击, 2003, 23(1): 13-18.

    Hu Shi-sheng, Wang Wu, Pan Yi, et al. Strain rate effect on the properties foam materials[J]. Explosion and Shock Waves, 2003, 23(1): 13-18.
    [14] 王永刚, 施绍裘, 王礼立.采用改进的SHPB方法对泡沫铝动态力学性能的研究[J].实验力学, 2003, 18(2): 257-264.

    Wang Yong-gang, Shi Shao-qiu, Wang Li-li. An improved SHPB method and its application in the study of dynamic mechanical behavior of aluminum foams[J]. Journal of Experimental Mechanics, 2003, 18(2): 257-264.
    [15] Wang Zhi-hua, Jing Lin, Zhao Long-mao. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J]. Transactions of Nonferrous Metals Society of China, 2011(21): 449-454. http://www.sciencedirect.com/science/article/pii/S1003632611607358
    [16] Zheng Zhi-jun, Liu Yao-dong, Yu Ji-lin, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. http://www.sciencedirect.com/science/article/pii/S0734743X11001497
    [17] Wang Li-li, Yang Li-ming, Ding Yuan-yuan. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar made of cellular material[J]. Acta Mechanica Sinica, 2013, 29(3): 420-428. http://www.cqvip.com/QK/86601X/20133/47712318.html
    [18] 王礼立.应力波基础[M]. 2版.北京: 国防工业出版社, 2005.
    [19] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Oxford: Pergamon Press, 1997.
  • 加载中
图(12)
计量
  • 文章访问数:  3484
  • HTML全文浏览量:  360
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-13
  • 修回日期:  2013-08-20
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回