基体材料对铝蜂窝动态强化特性的影响

谭思博 侯兵 李玉龙 赵涵

谭思博, 侯兵, 李玉龙, 赵涵. 基体材料对铝蜂窝动态强化特性的影响[J]. 爆炸与冲击, 2015, 35(1): 16-21. doi: 10.11883/1001-1455(2015)01-0016-06
引用本文: 谭思博, 侯兵, 李玉龙, 赵涵. 基体材料对铝蜂窝动态强化特性的影响[J]. 爆炸与冲击, 2015, 35(1): 16-21. doi: 10.11883/1001-1455(2015)01-0016-06
Tan Si-bo, Hou Bing, Li Yu-long, Zhao Han. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion And Shock Waves, 2015, 35(1): 16-21. doi: 10.11883/1001-1455(2015)01-0016-06
Citation: Tan Si-bo, Hou Bing, Li Yu-long, Zhao Han. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion And Shock Waves, 2015, 35(1): 16-21. doi: 10.11883/1001-1455(2015)01-0016-06

基体材料对铝蜂窝动态强化特性的影响

doi: 10.11883/1001-1455(2015)01-0016-06
基金项目: 国家自然科学基金项目(11202168)
详细信息
    作者简介:

    谭思博(1989—), 男, 硕士研究生

    通讯作者:

    李玉龙, liyulong@nwpu.edu.cn

  • 中图分类号: O347.3

Effect of base materials on the dynamic enhancement of aluminium honeycombs

  • 摘要: 为了明确基体材料对铝蜂窝动态强化行为的影响,首先从铝蜂窝结构中取出蜂窝壁,制成小试样并对其进行了力学性能测试,然后对几何参数相同而基体材料不同的2种铝蜂窝材料分别进行了单轴面外静态和动态压缩实验。实验结果表明, 2种铝蜂窝均存在明显的动态强化现象,但动态强化率存在显著差异。横向惯性理论可以解释蜂窝的动态强化行为和强化率的差异:基体材料应变硬化率高的铝蜂窝,其面外方向的动态强化现象相对更显著。
  • 图  1  铝箔拉伸试样和铝箔拉伸实验

    Figure  1.  Specimen and schematic of foil-tension experiment

    图  2  蜂窝试样和胞元尺寸

    Figure  2.  Specimen of honeycombs and its cell diameter

    图  3  拉伸实验中2种铝箔的真实应力应变曲线

    Figure  3.  Stress-strain curves of two kinds of aluminium foil

    图  4  蜂胞的等效横截面

    Figure  4.  Equivalent cross-sectional area of honeycombs

    图  5  铝蜂窝静态单轴压缩实验的重复性

    Figure  5.  Static compression test of aluminium honeycombs

    图  6  不同胞元数目蜂窝的平均应力σ比较

    Figure  6.  Nominal stress of honeycombs with different cells

    图  7  蜂窝压缩的渐进屈曲

    Figure  7.  Progressive buckling of honeycombs

    图  8  蜂窝动态压缩信号

    Figure  8.  Signals of SHPB test of aluminium honeycombs

    图  9  2种基体材料蜂窝的动态和准静态平均应力位移曲线

    Figure  9.  Nominal stress-displacement curves of honeycombs under static and dynamic loading

    图  10  刚塑性杆模型[9]

    Figure  10.  Rigid-plastic hinge model [9]

    图  11  铝蜂窝强化的横向惯性效应原理

    Figure  11.  Lateral inertia theory of aluminium honeycombs

    表  1  不同基体材料蜂窝的平台应力

    Table  1.   Plateau stress of honeycombs with different materials

    材料/加载速度 σp/MPa Δσ/MPa γ/%
    3003H18 (0.1 mm/s) 1.51
    3003H18 (10 m/s) 2.21 0.70 46
    3003H18 (28 m/s) 2.40 0.89 59
    5052H18 (0.1 mm/s) 1.91
    5052H18 (10 m/s) 2.44 0.53 28
    5052H18 (28 m/s) 2.66 0.75 39
    下载: 导出CSV
  • [1] Gibson L J, Ashby M F.多孔固体结构与性能[M]. 2版.北京: 清华大学出版社, 2003: 81.
    [2] Zhou Q, Mayer R. Characterization of aluminium honeycomb material failure in large deformation compression, shear, and tearing[J]. Journal of Engineering Materials and Technology, 2002, 124(4):412-420.
    [3] Crupi V, Epasto G, Guglielmino E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam[J]. Marine Structures, 2013, 30: 74-96.
    [4] Goldsmith W, Sackman J L. An experimental study of energy absorption in impact on sandwich plates[J]. International Journal of Impact Engineering, 1992, 12(2): 241-262.
    [5] Zhao H, Gary G. Crushing behavior of aluminium honeycombs under impact loading[J]. International Journal of Impact Engineering, 1998, 21(10): 827-836.
    [6] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570.
    [7] Zheng Z J, Yu J L, Wang C F, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave models[J]. International Journal of Impact Engineering, 2013, 53: 29-43.
    [8] Calladine C R, English R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701.
    [9] Zhao H, Abdenadher S. On the strength enhancement under impact loading of square tubes made from rate insensitive metals[J]. International Jourmal of Solids and Structures, 2004, 41(24/25): 6677-6697.
    [10] Hou B, Zhao H, Pattofatto S, et al. Inertia effects on the progressive crushing of aluminium honeycombs under impact loading[J]. International Jourmal of Solids and Structures, 2012, 49(19/20): 2754-2762.
    [11] 高玉华.铝合金LC4和LY12CZ在高应变率拉伸和压缩下的本构关系[J].材料科学与工艺, 1994, 2(2): 24-29.

    Gao Yu-hua. Dynamic compression and tensile properties of Al alloys LC4 and LY12CZ at high strain rate[J]. Material Science & Technology, 1994, 2(2): 24-29.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  3089
  • HTML全文浏览量:  389
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-31
  • 修回日期:  2013-09-26
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回