Numerical simulation on low-speed impact response of 2D plain-woven C/SiC composite
-
摘要: 首先,基于空气炮装置进行了2D-C/SiC薄板在冲击速度为79~219 m/s范围内的低速冲击实验,对碎片云团发展过程进行高速摄影记录;其次,基于Autodyn软件正交各向异性复合材料模型,推导2D-C/SiC材料相关参数;选取SPH求解器建立二维计算模型,对实验工况进行数值模拟,并基于碎片云结构、B扫描检测结果和碎片云轴向发展速度验证了该模型可以很好地描述C/SiC材料在冲击载荷作用下的脆性特征和软化行为。最后,基于数值模拟结果推导得出了钢弹丸冲击C/SiC材料的极限侵彻深度预测公式。Abstract: First, the experiments that the steel balls impact to 2D-C/SiC composite under velocity of 79~ 219 m/s are investigated by using the air gun. Second, material parameters of 2D-C/SiC are obtained based on an orthotropic constitutive material model in Autodyn, and numerical simulation corresponding to experimental conditions are conducted based on smooth particle hydrodynamics(SPH) solver. The comparisons between the calculation results and experimental data of the debris cloud structure, the B scan results and the axis velocity of debris cloudvalidate the ability of this model for describing the brittle characteristics and the softening behaviour of 2D-C/SiC under impact load. Finally, the limit penetration depth of 2D-C/SiC under the impact of steel ball is predicted.
-
表 1 低速冲击实验计划
Table 1. Low-speed impact experimental scheme
实验编号 D/mm vp/(m·s-1) E/J 实验结果 1 5 79.0 1.61 未穿透 2 5 92.7 2.22 未穿透 3 5 98.5 2.51 未穿透 4 5 130.0 4.37 穿透 5 6 144.0 9.26 穿透 6 6 147.0 9.65 穿透 7 6 211.0 19.89 穿透 8 6 218.0 21.23 穿透 9 6 219.0 21.43 穿透 表 2 正交弹性模型材料参数
Table 2. Parameters of orthotropic elastic model
刚度系数 体积模量 C11/GPa C22/GPa C33/GPa C12/GPa C23/GPa C31/GPa G12/GPa G23/GPa G31/GPa A/GPa 19 120.5 120.5 7.8 20 7.8 8.8 23 8.8 36.8 表 3 正交失效模型材料参数
Table 3. Parameters of orthotropic failure model
失效初始化 σfail-11/MPa σfail-22/MPa σfail-33/MPa σfail-12/MPa σfail-23/MPa σfail-31/MPa 50 455 455 40 165 40 后失效响应 刚度退化因子 失效模式 0.2 11失效
11方向拉伸
应力置022失效
22方向拉伸
应力置033失效
33方向拉伸
应力置012失效
11方向拉伸
应力置023失效
11方向拉伸
应力置031失效
11方向拉伸
应力置0 -
[1] 张立同, 成来飞, 徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术, 2003(1): 24-32. http://www.cqvip.com/qk/91463A/200301/7222401.htmlZhang Li-tong, Cheng Lai-fei, Xu Yong-dong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003(1): 24-32. http://www.cqvip.com/qk/91463A/200301/7222401.html [2] Chawla K K. Ceramic matrix composite[M]. 2nd ed. USA: Kluwer Academic Publisher, 2003. [3] Lamouroux F, Bertrand S, Pailer R, et al. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J]. Composites Science and Technology, 1999, 59(7): 1073-1085. http://www.sciencedirect.com/science/article/pii/S0266353898001468 [4] 殷晓光. C/SiC陶瓷基复合材料的力学及高温性能研究[D].北京: 清华大学, 2011. [5] Camus G, Guillaumat L, Baste S. Development of damage in a 2D woven C/SiC composite under mechanical loading: Ⅰ. Mechanical characterization[J]. Composites Science and Technology, 1996, 56(12): 1363-1372. http://www.sciencedirect.com/science/article/pii/S0266353896000942 [6] Bouazzaoui R E, Baste S, Camus G. Development of damage in a 2D woven C/SiC composite under mechanical loading: Ⅱ. Ultrasonic characterization[J]. Composites Science and Technology, 1996, 56(12): 1373-1382. http://www.sciencedirect.com/science/article/pii/S0266353896900081 [7] 杨扬, 徐绯, 张岳青, 等.二维平纹编织C/SiC复合材料的超高速碰撞实验[J].爆炸与冲击, 2013, 33(2): 156-162. http://www.cqvip.com/QK/94778X/201302/46165129.htmlYang Yang, Xu Fei, Zhang Yue-qing, et al. Hypervelocity impact experiment on two-dimensional plain-woven C/SiC composites[J]. Explosion and Shock Waves, 2013, 33(2): 156-162. http://www.cqvip.com/QK/94778X/201302/46165129.html [8] Clegg R A, Hayhurst C J, Leahy J G, et al. Application of a coupled anisotropic material model to high velocity impact of composite textile armour[C]//18th International Symposium and Exhibition on Ballistics, USA: San Antonio, 1999. [9] Hayhurst C J, Hiermaier S J, Clegg R A, et al. Development of material models for Nextel and Kevlar-Epoxy for high pressures and strain rates[J]. International Journal of Impact Engineering, 1999, 23(1): 365-376. http://www.sciencedirect.com/science/article/pii/S0734743X99000871 [10] Hiermaier S, Riedel W, Clegg R A, et al. Advanced material models for hypervelocity impact simulations[R]. EMI-Report, E43/99, ESA CR(P)4305, 1999. [11] Anderson C E, Cox P A, Johnson G R, et al. A constitutive formulation for anisotropic materials suitable for wave propagation computer program-Ⅱ[J]. Computational Mechanics, 1994, 15(3): 201-223. doi: 10.1007/BF00375030 [12] 钱伟长.穿甲力学[M].北京: 国防工业出版社, 1984.