Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures
-
摘要: 为研究温度、加载速率、纤维掺量对玄武岩纤维增强混凝土(BFRC)动态压缩强度和冲击韧度的影响,利用∅100 mm分离式霍普金森压杆(SHPB)装置,对经历不同温度作用后的BFRC进行冲击加载实验。结果表明:高温后BFRC的动压强度及冲击韧度在同一温度下随平均应变率的上升近似线性增大;温度的升高总体上导致BFRC在同一加载速率下的动压强度及冲击韧度减小、应变率敏感性减弱;同一工况下,BFRC的动压强度和冲击韧度较素混凝土普遍提高,且当纤维体积掺量为0.2%时强韧化效果相对最佳。由此可见,高温后BFRC的冲击压缩特性受温度、加载速率、纤维掺量的综合作用影响,掺入玄武岩纤维可以有效降低高温后BFRC的损伤劣化程度。Abstract: To investigate the influences of temperature, impact velocity and fiber volumetric fraction on dynamic compressive strength and impact toughness of basalt fiber reinforced concrete (BFRC), dynamic compressive experiments were carried out on BFRC after different elevated temperatures by using a 100 mm diameter split Hopkinson pressure bar (SHPB) equipment. The results demonstrate that the dynamic compressive strength and impact toughness increase approximately linearly with the increase of average strain rate under the same temperature. At a fixed impact velocity, the rising of temperature results in a decrease in dynamic compressive strength and impact toughness as well as their strain rate sensitivities. For a given working condition, the dynamic compressive strength and impact toughness of BFRC are generally higher than those of plain concrete. The strengthening and toughening effect are relatively the best when the fiber volumetric fraction is 0.2%. Consequently, changes in dynamic compressive properties of BFRC after elevated temperatures are the combining effects of temperature, impact velocity and fiber volumetric fraction. The adding of basalt fiber can significantly decrease the thermal deterioration of BFRC.
-
表 1 BFRC配合比
Table 1. Mix proportions of BFRC
kg/m3 水泥 粉煤灰 硅灰 碎石 砂 FDN 水 玄武岩纤维 φ=0.1% φ=0.2% φ=0.3% 371 99 25 1 008 672 5 180 2.65 5.30 7.95 -
[1] Yi N H, Kim J H J, Han T S, et al. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete[J]. Construction and Building Materials, 2012, 28: 694-707. http://www.sciencedirect.com/science/article/pii/S0950061811005411 [2] 许金余, 李为民, 范飞林, 等.碳纤维增强地聚合物混凝土的SHPB试验研究[J].建筑材料学报, 2010, 13(4): 435-439. http://www.cqvip.com/Main/Detail.aspx?id=35091665Xu Jin-yu, Li Wei-min, Fan Fei-lin, et al. Experimental study on impact properties of carbon fiber reinforced geopolymeric concrete using a SHPB[J]. Journal of Building Materials, 2010, 13(4): 435-439. http://www.cqvip.com/Main/Detail.aspx?id=35091665 [3] 任兴涛, 周听清, 钟方平, 等.钢纤维活性粉末混凝土的动态力学性能[J].爆炸与冲击, 2011, 31(5): 540-545. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201105016.htmRen Xing-tao, Zhou Ting-qing, Zhong Fang-ping, et al. Dynamic mechanical behavior of steel-fiber reactive powder concrete[J]. Explosion and Shock Waves, 2011, 31(5): 540-545. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ201105016.htm [4] Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513/514: 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890 [5] 杜修力, 窦国钦, 李亮, 等.纤维高强混凝土的动态力学性能试验研究[J].工程力学, 2011, 28(4): 138-144. http://www.cqvip.com/QK/95324X/20114/37335680.htmlDu Xiu-li, Dou Guo-qin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4): 138-144. http://www.cqvip.com/QK/95324X/20114/37335680.html [6] Wang S S, Zhang M H, Quek S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials, 2012, 31: 1-11. http://www.sciencedirect.com/science/article/pii/S0950061811007732 [7] 贾彬.混凝土高温静动力学特性研究[D].重庆: 重庆大学, 2011. [8] 陶俊林, 秦李波, 李奎, 等.混凝土高温动态压缩力学性能实验[J].爆炸与冲击, 2011, 31(1): 101-106.Tao Jun-lin, Qin Li-bo, Li Kui, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature[J]. Explosion and Shock Waves, 2011, 31(1): 101-106. [9] 许金余, 刘健, 李志武, 等.高温中与高温后混凝土的冲击力学特性[J].建筑材料学报, 2013, 16(1): 1-5. http://d.wanfangdata.com.cn/Periodical/jzclxb201301001Xu Jin-yu, Liu Jian, Li Zhi-wu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials, 2013, 16(1): 1-5. http://d.wanfangdata.com.cn/Periodical/jzclxb201301001 [10] 贾福萍, 王永春, 渠艳艳, 等.冷却方式和静置时间对高温后混凝土残余强度影响[J].建筑材料学报, 2011, 14(3): 400-404. http://d.wanfangdata.com.cn/Periodical/jzclxb201103022Jia Fu-ping, Wang Yong-chun, Qu Yan-yan, et al. Influences of various cooling methods and standing time on residual strength of concrete after elevated temperature exposure[J]. Journal of Building Materials, 2011, 14(3): 400-404. http://d.wanfangdata.com.cn/Periodical/jzclxb201103022 [11] 王礼立.应力波基础[M].北京: 国防工业出版社, 2005. [12] 李为民, 许金余.大直径分离式Hopkinson压杆试验中的波形整形技术研究[J].兵工学报, 2009, 30(3): 350-355.Li Wei-min, Xu Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3): 350-355. [13] 中华人民共和国建设部, 国家质量监督检验检疫总局. GB/T 50081-2002, 普通混凝土力学性能试验方法标准[S].北京: 中国建筑工业出版社, 2003. [14] 吕天启, 赵国藩, 林志伸, 等.高温后静置混凝土的微观分析[J].建筑材料学报, 2003, 6(2): 135-141. http://www.cnki.com.cn/Article/CJFDTotal-JZCX200302005.htmLü Tian-qi, Zhao Guo-fan, Lin Zhi-shen, et al. Microscopic analysis of long standing concrete after high temperature[J]. Journal of Building Materials, 2003, 6(2): 135-141. http://www.cnki.com.cn/Article/CJFDTotal-JZCX200302005.htm [15] Mehmet B K. Effect of cooling regimes on compressive strength of concrete with lightweight aggregate exposed to high temperature[J]. Construction and Building Materials, 2013, 41: 21-25. http://www.sciencedirect.com/science/article/pii/S0950061812009403 [16] Romualdi J P, Batson G B. Mechanics of crack arrest in concrete[J]. Project American Society of Civil Engineers, 1963, 89(6): 147-168. http://www.researchgate.net/publication/285463726_Mechanics_of_crack_arrest_in_concrete