Application of target approaching with variable weight in prediction of rockburst intensity
-
摘要: 针对岩爆烈度预测的不确定性和影响岩爆发生的各单个指标间互不相容的问题,将变权理论和靶心贴近度相结合,进行岩爆烈度预测。首先,该方法在考虑评判者偏好度的基础上,引入了一种均衡函数,给出了一种变权模式,用来计算各个指标的权重;然后,该方法构造了一种区间关联函数,将单指标关联函数的最大值作为靶心坐标,根据样本与靶心的贴近度来预测岩爆烈度,即靶心贴近度值越大,则岩爆烈度越接近该贴近度所对应的岩爆烈度等级;最后,将该方法应用于灵宝东峪矿区、冬瓜山铜矿和秦岭隧道岩爆预测等实例中,结果表明:该方法不仅可以准确、合理地预测岩爆烈度,而且相比其他方法,该方法不需要任何先验知识,使用起来更直接、更方便。Abstract: According to the uncertainty of rock burst intensity prediction and the incompatible problem of the single index which mainly influences the rock burst, a method combining variable weight theory with the degree of target approaching is proposed to make prediction of rock burst intensity. First, considering the preference degree of the judge, a variable weight model is given to calculate the weights of indexes based on a balance function. Second, this method constructs an interval incidence function, and the maximum value of incidence function for single index is used to be the target, so the rock burst intensity can be predicted based on the degree of approaching between samples and targets-the larger degree of the target approaching, the higher intensity of the rock burst. Finally, this method is applied to Dongyu rock mine in Lingbao, Dongguashan rock mine and Qinling Tunnel rock burst, and the results show that it can predict the rock burst intensity correctly and reasonably. What's more, compared with other methods like Bayes discriminant analysis method and distance discriminant analysis method(DDA), it doesn't need any prior knowledge, and so is very direct and convenient for calculation. Therefore, this method is worthy of promotion and application.
-
Key words:
- mechanics of explosion /
- target approaching /
- AHP /
- prediction of intensity /
- rockburst /
- incidence function /
- variable weight
-
表 1 岩爆烈度与各主控因子之间的关系
Table 1. Relations between intensity of rockburst and main control factors
岩爆烈度 σθ/σc σc/σt wet 无岩爆(Ⅰ级) < 0.3 >40.0 < 2.0 轻微岩爆(Ⅱ级) 0.3~0.5 26.7~40.0 2.0~3.5 中等岩爆(Ⅲ级) 0.5~0.7 14.5~26.7 3.5~5.0 强岩爆(Ⅳ级) >0.7 < 14.5 >5.0 表 2 标度意义表
Table 2. Scale significance
标度bij 1 3 5 7 9 2, 4, 6, 8 i与j比较 同等重要 i稍微重要 i比较重要 i非常重要 i极其重要 重要性介于上述中间 表 3 平均随机一致性指标
Table 3. Average random consistency scale
n 3 4 5 6 7 8 9 10 11 12 13 14 Ri 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 表 4 灵宝东峪矿区岩爆参数
Table 4. Parameters of rockburst for Dongyu rock mine in Lingbao
工程名称 σθ/σc σc/σt wet 实际岩爆烈度 SM 6200段 0.542 12.2 4.89 中等岩爆(Ⅲ级) SM 4740段 0.409 30.7 7.30 轻微岩爆(Ⅱ级) SM 4320段 0.461 29.8 5.30 轻微岩爆(Ⅱ级) 表 5 灵宝东峪矿区岩爆参数变权及靶心
Table 5. Variable weight and target of parameters of rockburst for Dongyu rock mine in Lingbao
工程名称 σθ/σc σc/σt wet 靶心坐标 SM 6200段 0.399 0.430 0.170 (0.423,0.628,0.148) SM 4740段 0.597 0.240 0.163 (0.910,0.603,0.161) SM 4320段 0.552 0.248 0.200 (0.387,0.460,0.244) 表 6 灵宝东峪矿区岩爆烈度预测结果
Table 6. Prediction results of rockburst intensity for Dongyu rock mine in Lingbao
工程名称 靶心贴近度 预测岩爆烈度 实际岩爆烈度 Ⅰ级岩爆 Ⅱ级岩爆 Ⅲ级岩爆 Ⅳ级岩爆 本文方法 Bayes法 SM 6200段 -2.932 -0.887 0.570 0.432 Ⅲ级 Ⅲ级 Ⅲ级 SM 4740段 -2.527 0.150 -0.916 -1.759 Ⅱ级 Ⅱ级 Ⅱ级 SM 4320段 -2.133 0.472 0.204 -1.130 Ⅱ级 Ⅱ级 Ⅱ级 表 7 冬瓜山矿区岩爆参数
Table 7. Parameters of rockburst for Dongguashan rock mine
岩石种类 σθ/σc σc/σt wet 实际岩爆烈度 矽卡岩 0.554 11.1 3.97 中等岩爆(Ⅲ级) 表 8 冬瓜山矿区岩爆参数变权及靶心
Table 8. Variable weight and target of parameters of rockburst for Dongguashan rock mine
岩石种类 σθ/σc σc/σt wet 靶心坐标 矽卡岩 0.366 0.453 0.181 (0.541,0.934,0.626) 表 9 冬瓜山矿区岩爆烈度预测结果
Table 9. Prediction results of rockburst intensity for Dongguashan rock mine
岩石种类 靶心贴近度 预测岩爆烈度 实际岩爆烈度 Ⅰ级岩爆 Ⅱ级岩爆 Ⅲ级岩爆 Ⅳ级岩爆 本文方法 DDA法 矽卡岩 -2.993 -1.109 0.327 0.235 Ⅲ级 Ⅲ级 Ⅲ级 编号 σθ/σc σc/σt wet 实际岩爆烈度 1 0.43 14 7.44 中等岩爆(Ⅲ级) 2 0.41 15 7.08 中等岩爆(Ⅲ级) 3 0.55 15 6.43 中等岩爆(Ⅲ级) 表 11 秦岭隧道岩爆参数变权及靶心
Table 11. Variable weight and target of parameters of rockburst for Qinling tunnel
编号 σθ/σc σc/σt wet 靶心坐标 1 0.485 0.378 0.137 (0.703,0.131,0.047) 2 0.505 0.354 0.141 (0.901,0.086,0.338) 3 0.448 0.389 0.163 (0.495,0.086,0.857) 表 12 秦岭隧道岩爆烈度预测结果
Table 12. Prediction results of rockburst intensity for Qinling tunnel
编号 靶心贴近度 预测岩爆烈度 实际岩爆烈度 Ⅰ级岩爆 Ⅱ级岩爆 Ⅲ级岩爆 Ⅳ级岩爆 本文方法 DDA法 1 -2.698 -0.493 -0.213 -0.091 Ⅳ级 Ⅲ级 Ⅲ级 2 -2.576 -0.368 -0.347 -0.373 Ⅲ级 Ⅲ级 Ⅲ级 3 -3.295 -0.937 0.548 0.303 Ⅲ级 Ⅲ级 Ⅲ级 -
[1] 高玮, 张飞君.深部地下工程岩爆预测的筛选蚁群聚类算法[J].爆炸与冲击, 2012, 32(6): 568-572.Gao Wei, Zhang Fei-jun. Forecasting of rockburst in deep underground engineering based on abstraction ant colony clustering algorithm[J]. Explosion and Shock Waves, 2012, 32(6): 568-572. [2] 刘晓辉, 吴爱祥, 王春来, 等.某深井矿山岩爆预测模式研究[J].采矿与安全工程学报, 2012, 29(1): 78-83.Liu Xiao-hui, Wu Ai-xiang, Wang Chun-lai, et al. Study on rockburst forecasting prediction in a deep mine[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 78-83. [3] 张志龙, 李天斌, 王兰生, 等.雪峰山隧道岩爆问题预测研究[J].煤田地质与勘探, 2005, 33(1): 58-60.Zhang Zhi-long, Li Tian-bin, Wang Lang-sheng, et al. Predictive of rockburst in the Xuefeng mountain express highway tunnel[J]. Coal Geology & Exploration, 2005, 33(1): 58-60. [4] 罗磊, 曹平.深部巷道岩爆加权距离判别法模型的分析和应用[J].中南大学学报:自然科学版, 2012, 43(10): 3971-3975.Luo Lei, Cao Ping. Model of weighted distance discriminant analysis and application for deep roadway[J]. Journal of Central South University: Science and Technology, 2012, 43(10): 3971-3975. [5] 冯夏庭, 陈炳瑞, 明华军, 等.深部隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3): 433-444.Feng Xia-ting, Chen Bing-rui, Ming Hua-jun, et al. Evolution law and mechanism of rockbursts in deep tunnels: Immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. [6] 宫凤强, 李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报, 2007, 26(5): 1012-1018.Gong Feng-qiang, Li Xi-bing. A distance distancenant analysis method for prediction of possibility and classification of rockburst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1012-1018. [7] 孙旭宁, 赵国斌, 张国泉.岩爆的影响因素分析与预测[J].施工技术, 2012, 41(367): 60-63.Sun Xu-ning, Zhao Guo-bin, Zhang Guo-quan. Analysis of influencing factors and prediction on rockburst[J]. Construction Technology, 2012, 41(367): 60-63. [8] Kidybinski A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(6): 295-304. https://www.sciencedirect.com/science/article/pii/0148906281911943 [9] 赵本钓.冲击地压及其防治[M].北京: 煤炭工业出版社, 1995: 241-245. [10] 唐礼忠, 潘长良, 王文星.用于分析岩爆倾向性的剩余能量指数[J].中南工业大学学报, 2002, 33(2): 129-132.Tang Li-zhong, Pan Chang-liang, Wang Wen-xing. Surplus energy index for analysing rock burst proneness[J]. Journal of Central South University of Technology, 2002, 33(2): 129-132. [11] 王元汉, 李卧东, 李启光, 等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 1998, 17(5): 493-501.Wang Yuan-han, Li Wo-dong, Li Qi-guang, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 493-501. [12] 夏连学, 张慧颖.变权靶心贴近度在膨胀土分类中的应用[J].长安大学学报:自然科学版, 2008, 28(4): 32-34.Xia Lian-xue, Zhang Hui-ying. Application of target approaching in variable weight to expansive soil classification[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28(4): 32-34. [13] 张勇慧, 李红旭, 盛谦, 等.基于模糊综合评判的公路岩质边坡稳定性分级研究[J].岩土力学, 2010, 31(10): 3151-3156.Zhang Yong-hui, Li Hong-xu, Sheng Qian, et al. Study of stability gradation of highway rock slopes based on fuzzy comprehensive evaluation[J]. Rock and Soil Mechanics, 2010, 31(10): 3151-3156. [14] 刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践, 1997, 17(4): 58-64.Liu Wen-qi. Balanced function and its application for variable weight synthesizing[J]. Systems Engineering-Theory & Practice, 1997, 17(4): 58-64. [15] 付玉华, 董陇军.岩爆预测的Bayes判别模型及应用[J].中国矿业大学学报, 2009, 38(4): 528-533.Fu Yu-hua, Dong Long-jun. Bayes discriminant analysis model and its application to the prediction and classification of rockburst[J]. Journal of China University of Mining & Technology, 2009, 38(4): 528-533. [16] 白明洲, 王连俊, 许兆义.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报, 2002, 12(4): 65-69.Bai Ming-zhou, Wang Lian-jun, Xu Zhao-yi. Study on a neutral network model and its application to predict the risk of rock blast[J]. China Safety Science Journal, 2002, 12(4): 65-69.