A simple method of measuring impulse current of small high-voltage exploding device
-
摘要: 依据脉冲放电电路的等效电路及其微分方程,采用Levenberg-Marquarat算法对主电容放电电压测试波形数据进行衰减系数识别,从而获得模拟电流波形。该方法克服了分流器法和Rogowski线圈法等直接测量小型高压引爆装置冲击电流时,因附加电路引起的电流波形失真。MATLAB模拟结果表明,该方法得到的电流模拟波形与真实电流波形拟合精度高,可用于直列式引信电子安全与解除保险装置和低能冲击片雷管的优化匹配设计。
-
关键词:
- 爆炸力学 /
- Levenberg-Marquarat算法 /
- 放电电流模拟 /
- 小型高压引爆装置 /
- 衰减系数
Abstract: A simple method was developed for measuring the impulse current waveform produce by a small high-voltage exploding device. The model of impulse current was determined by attenuation coefficient. To estimate the attenuation coefficient from the actual discharge voltage curve, the Levenberg-Marquarat algorithm was applied based on the equivalent circuit of discharge circuit and its differential equations. Compared with the direct measuring methods such as using shunt or Rogowski coil, this method overcomes the distortion of impulse current waveform caused by additional measuring circuit. The results show that the simulation current waveform fits the actual current waveform well. The method can be used for optimum matching design of electronic safety, arming device of in-line fuse or low-energy slapper detonator. -
表 1 衰减系数识别数值结果
Table 1. Numerical results of attenuation coefficient identification
步数 δ S(δ) pk P 0 2 000 000 1 171.61 0.004 16 1 2 000 010 1 171.53 10 0.004 16 2 2 000 030 1 171.36 20 0.004 16 3 2 000 070 1 171.03 40 0.004 16 4 2 000 150 1 170.36 80 0.004 16 5 2 000 310 1 169.03 160 0.004 16 6 2 000 630 1 166.37 320 0.004 15 7 2 001 270 1 161.06 640 0.004 14 8 2 002 550 1 150.47 1 280 0.004 12 9 2 005 110 1 129.46 2 560 0.004 08 10 2 010 230 1 088.07 5 120 0.004 00 11 2 020 470 1 007.77 10 240 0.003 84 12 2 040 950 857.06 20 480 0.003 52 13 2 081 910 594.38 40 960 0.002 90 14 2 163 830 217.92 81 920 0.001 71 15 2 291 189 0.074 463 127 259 3.05×10-5 16 2 293 600 9.72×10-9 2 442 1.10×10-8 表 2 模拟波形与实测波形拟合结果表
Table 2. The omparaison of simulation currents and measured currents
t/ns Isim/A Iact/A E/% 10 285.4 280 -1.93 20 551.1 540 -2.06 30 794.2 820 3.15 40 1 012.0 1 060 4.53 50 1 203.0 1 250 3.76 60 1 366.0 1 420 3.80 70 1 499.0 1 540 2.66 80 1 603.0 1 620 1.05 90 1 677.0 1 700 1.35 100 1 722.0 1 680 -2.50 110 1 738.0 1 700 -2.24 120 1 728.0 1 680 -2.86 130 1 692.0 1 640 -3.17 140 1 632.0 1 540 -5.97 150 1 551.0 1 460 -6.23 160 1 452.0 1 360 -6.76 -
[1] 陈景亮, 姚学玲, 孙伟.脉冲电流技术[M].西安: 西安交通大学出版社, 2008. [2] 戴建华, 李开成.基于Rogowski线圈的大电流测量[J].高电压技术, 2002, 28(1): 6-10.Dai Jian-hua, Li Kai-cheng. Heavy current measurement based on Rogowski coil[J]. High Voltage Engineering, 2002, 28(1): 6-10. [3] Eriksson J, Wedin P A, Gulliksson M E. Regularization methods for uniformly rank-deficient nonlinear least-squares problems[J]. Journal of Optimization Theory and Applications, 2005, 127(1): 1-26. doi: 10.1007%2Fs10957-005-6389-0 [4] Zhang J Z, Xue Y, Zhang K. A structured secant method based on a new quasi-newton equation for nonlinear least squares problems[J]. Bit Numerical Mathematics, 2003, 43(1): 217-229. doi: 10.1023/A:1023665409152 [5] 邹志伟.求解对称非线性方程组的一种修正共轭梯度法[D].长沙: 湖南大学, 2010. [6] 孙风建.基于新拟牛顿方程的非线性最小二乘的一类新算法[D].南京: 南京理工大学, 2007. [7] Fan Jin-yan. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2011, 81(277): 447-466. [8] 王新洲.非线性模型参数估计理论与应用[M].武汉: 武汉大学出版社, 2002.