Interior ballistic theory based analysis of solid differential traveling charge of high muzzle velocity gun
-
摘要: 提出了一种基于差动原理的固体差动随行装药的高初速火炮发射方案,该方案能有效克服传统随行装药技术提高初速必将伴随射弹底部最大压力增加的缺点。它的主要特点是运用差动原理,实现不同组合件之间的速度不同,自动压缩储能室使随行工质向弹后连续喷射,有效抑制和消除了弹丸运动引发的稀疏波影响,提高了火炮工作容积利用率。推导了差动随行组合弹丸不同组合件动力学模型,给出了弹载工质物理量分布关系式。计算结果表明,在最大膛压、飞行弹丸底部最大压力、弹重及弹丸行程等不变条件下,随行药量取10.2 kg,某大口径火炮的弹丸初速可提高26%,火炮工作容积利用率提高约44%。该方案可为火炮提高初速和实现超远程发射提供新的途径。Abstract: A solid traveling charge concept which can be used in high muzzle velocity gun firing is proposed based on differential principle. This concept can effectively overcome disadvantage of traditional traveling charge which increases projectile velocity and projectile base maximum pressure at the same time. A main character of the concept is to realize automatic compression of energy storage chamber and continuous injection of traveling working medium toward the in-bore space through speed difference between different components. Therefore the concept can effectively fill pressure drops of the projectile bottom and improve the utilization rate of gun working volume. The kinetic model of different components of differential traveling projectile and the physical quantity distribution of missile-borne working medium are deduced. With fixed maximum bore pressure, maximum projectile base pressure, projectile mass and travel, etc., and traveling charge mass 10.2 kg, calculation of some large caliber gun indicates that the projectile muzzle velocity increases by 26% and the utilization rate of gun working volume increases by 44%. This study provides a new technological approach for increasing gun muzzle velocity and realizing ultra-long distance firing.
-
表 1 某大口径火炮计算参量
Table 1. Calculation parameters of a large caliber gun
d/mm lg/m W0/m3 pm/MPa 2e1/mm 2e1t/mm f1/(MJ·kg-1) ft /(MJ·kg-1) A0/dm2 155 7.08 0.023 329 2.3~3.2 1.0 1 1 0.28~0.83 表 2 不同方案的弹道计算结果
Table 2. Interior ballistic numerical results of different schemes
方案 2e1/mm mt0/kg ω1/kg m1/kg m2/kg v0/(m·s-1) pdm/MPa p1m/MPa p2m/MPa pg/MPa lkt/m ηg 1 2.3 6.2 14.156 7.2 38.3 1 065.0 301.5 315.9 296.5 94.1 3.001 0.626 2 2.3 7.2 13.926 7.2 38.3 1 083.7 302.6 318.3 296.4 102.2 3.237 0.639 3 2.3 8.2 13.695 7.2 38.3 1 100.5 303.4 320.6 296.4 109.4 3.569 0.652 4 2.3 9.2 13.463 7.2 38.3 1 114.1 304.1 322.9 296.4 116.8 3.898 0.662 5 2.6 9.2 15.116 7.2 38.3 1 139.0 301.9 323.0 296.4 128.4 4.279 0.696 6 2.9 9.2 16.510 7.2 38.3 1 165.1 300.9 326.2 296.5 141.7 4.758 0.718 7 2.9 9.2 16.519 5.5 40.0 1 167.4 300.8 325.8 296.9 142.5 4.760 0.718 8 2.9 10.2 16.355 5.5 40.0 1 171.3 301.5 327.5 296.2 148.8 5.035 0.727 常规 2.3 15.248 45.5 930.1 296.6 53.3 0.504 -
[1] 杨绍卿.灵巧弹药工程[M].北京: 国防工业出版社, 2010. [2] 邹华, 张领科, 周彦煌.采用组合发射提高某型火炮初速的理论研究[J].火炸药学报, 2013, 36(2): 69-75.Zou Hua, Zhang Ling-ke, Zhou Yan-huang. Theoretical study of increasing projectile initial velocity by using combined firing[J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 69-75. [3] 杨京广, 余永刚.随行装药方案提高大口径火炮初速的数值预测[J].爆炸与冲击, 2008, 28(2): 161-165. doi: 10.11883/1001-1455(2008)02-0161-05Yang Jing-guang, Yu Yong-gang. Velocity prediction of big caliber gun based on traveling charge scheme[J]. Explosion and Shock Waves, 2008, 28(2): 161-165. doi: 10.11883/1001-1455(2008)02-0161-05 [4] 王浩.随行装药理论研究与实验技术方案[D].南京: 南京理工大学, 1992. [5] 周彦煌, 王升晨. 120 mm反坦克炮采用随行装药提高初速的理论研究[J].兵工学报, 1995(3): 5-10.Zhou Yan-huang, Wang Sheng-chen. A theoretical study of muzzle velocity augmentation with traveling charges in the 120 mm anti-tank gun[J]. Acta Armamentarii, 1995(3): 5-10. [6] Morrison W F, Coffee T P. A modified Lagrange pressure gradient for the regenerative liquid propellant gun[R]. BRL-TR-3073. U. S. Army Ballistic Research Laboratory, 1990.