二次燃烧对底排装置尾部流场影响的数值模拟

余文杰 余永刚

余文杰, 余永刚. 二次燃烧对底排装置尾部流场影响的数值模拟[J]. 爆炸与冲击, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07
引用本文: 余文杰, 余永刚. 二次燃烧对底排装置尾部流场影响的数值模拟[J]. 爆炸与冲击, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07
Yu Wen-jie, Yu Yong-gang. Numerical simulation of secondary combustion affecting base flow of base bleed equipment[J]. Explosion And Shock Waves, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07
Citation: Yu Wen-jie, Yu Yong-gang. Numerical simulation of secondary combustion affecting base flow of base bleed equipment[J]. Explosion And Shock Waves, 2015, 35(1): 94-100. doi: 10.11883/1001-1455(2015)01-0094-07

二次燃烧对底排装置尾部流场影响的数值模拟

doi: 10.11883/1001-1455(2015)01-0094-07
基金项目: 国家自然科学基金项目(51176076)
详细信息
    作者简介:

    余文杰(1986—), 男, 博士研究生, spacecow@sina.com

  • 中图分类号: O354;V211.3

Numerical simulation of secondary combustion affecting base flow of base bleed equipment

  • 摘要: 为研究二次燃烧对底排尾部流场的影响,建立了底排装置尾部流场的化学非平衡流数学物理模型。其中二次燃烧模型采用10组分25步反应的H2-CO燃烧模型,运用统一算法的思路编程求解二维轴对称方程组。数值模拟结果与实验结果较吻合。在此基础上,对尾部流场以及燃烧特性进行了数值预测, 结果表明:二次燃烧所释放的热能远大于排气本身的热能,对增压减阻的贡献可达78%。二次燃烧改变了尾部的温度分布规律,使温度峰值分布在两个回流区内。排气沿着两回流区间的狭缝流入剪切层发生燃烧。一部分混气回流入底部附近,其中氧气不充足,存在大量CO和少量H2未直接反应。一部分混气沿着剪切层流入下游以及主回流区内,氧含量逐渐增多,H2和CO被反应殆尽。结果可为进一步研究底排增压减阻提供参考。
  • 图  1  底排装置尾部流场示意图

    Figure  1.  Schematic of base flow with mass bleed

    图  2  数值模拟模型

    Figure  2.  Model for numerical simulation

    图  3  模型尾部区域网格

    Figure  3.  Grids in the tail of the model

    图  4  底部面积平均压力随排气参数变化曲线图

    Figure  4.  Area-averaged base pressures with different injections

    图  5  底部面积平均压力随排气参数变化曲线图

    Figure  5.  Area-averaged base pressures with different injections

    图  6  温度分布(I=0.010 7)

    Figure  6.  Temperature contours(I=0.010 7)

    图  7  尾部附近温度分布图(I=0.010 7)

    Figure  7.  Temperature contours in base region(I=0.010 7)

    图  8  尾部H2质量分数分布图(I=0.010 7)

    Figure  8.  Mass fraction of hydrogen in base region(I=0.0107)

    图  9  尾部CO质量分数分布图(I=0.010 7)

    Figure  9.  Mass fraction of carbon monoxide in base region(I=0.010 7)

    图  10  尾部O2质量分数分布图(I=0.010 7)

    Figure  10.  Mass fraction of oxygen in base region(I=0.010 7)

  • [1] 郭锡福.底部排气弹外弹道学[M].北京: 国防工业出版社, 1995.
    [2] 丁则胜, 邱光纯, 刘亚飞, 等.固体燃料底部排气空气动力研究[J].空气动力学学报, 1991, 9(3): 300-307.

    Ding Ze-sheng, Qiu Guang-chun, Liu Ya-fei, et al. An aerodynamic investigation of base bleed by solid fuel[J]. Acta Aerodynamica Sinica, 1991, 9(3): 300-307.
    [3] Bowman J E, Clayden W A. Cylindrical afterbodies at M=2 with hot gas ejection[J]. AIAA Journal, 1968, 6(12): 2429-2431.
    [4] Strahle W C, Hubbartt J E, Walterick R. Base burning performance at mach 3[J]. AIAA Journal, 1982, 20(7): 986-991. doi: 10.2514/3.51157
    [5] 丁则胜, 罗荣, 陈少松, 等.底部燃烧减阻性能的若干参数影响研究[J].弹道学报, 1996, 8(4): 79-83.

    Ding Ze-sheng, Luo Rong, Chen Shao-song, et al. A study of some parameters influence on performance of drag peduction by base burning[J]. Journal of Ballistics, 1996, 8(4): 79-83.
    [6] Sahu J, Nietubicz C J, Steger J L. Navier-Stokes computations of projectile base flow with and without base injection[J]. AIAA Journal, 1985, 23(9): 1348-1355. doi: 10.2514/3.9091
    [7] Gibeling H J, Buggeln R C. Projectile base bleed technology part 1: Analysis and results[R]. AD-A258 459, 1992.
    [8] Choi J Y, Shin E, Kim C K. Numerical study of base-bleed projectile with external combustion[C]//AIAA Joint Propulsion Conference and Exhibit. Tucson, Arizona: AIAA, 2005.
    [9] 陈新虹, 黄华, 周志超, 等.排气能量对底部排气弹气动特性影响的数值模拟[J].兵工学报, 2010, 31(4): 447-452.

    Chen Xin-hong, Huang Hua, Zhou Zhi-chao, et al. Numerical simulation of base bleed energy affecting aerodynamic performance of base bleed projectiles[J]. Acta Armamentarii, 2010, 31(4): 447-452.
    [10] Shin J R, Cho D R, Won S H, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio: AIAA, 2008.
    [11] Shin J R, Choi J Y. DES study of base and base-bleed flows with dynamic formulation of DES constant[C]//AIAA Aerospace Sciences Meeting. Orlando, Florida: AIAA, 2011.
    [12] Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
    [13] 武频, 赵润祥, 郭锡福.弧长网格生成法及其应用[J].南京理工大学学报, 2002, 26(5): 482-485.

    Wu Pin, Zhao Run-xiang, Guo Xi-fu. Arc length method of grid generation and its application[J]. Journal of Nanjing University of Science and Technology, 2002, 26(5): 482-485.
    [14] Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA-TP-2791, 1988.
    [15] Gardiner W C. Combustion chemistry[M]. New York: Springer-Verlag, 1984.
    [16] 刘君, 张涵信, 高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5): 19-22.

    Liu Jun, Zhang Han-xin, Gao Shu-chun. A new uncoupled method for numerical simulation of nonequilibrium flow[J]. Journal of National University of Defense Technology, 2000, 22(5): 19-22.
    [17] 梁德旺, 王可. AUSM+格式的改进[J].空气动力学学报, 2004, 22(4): 404-409.

    Liang De-wang, Wang Ke. Improvement of AUSM+ scheme[J]. Acta Aerodynamica Sinica, 2004, 22(4): 404-409.
    [18] Yoon S, Jameson A. Lower-upper symmetric-gauss-seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26: 1025-1026. doi: 10.2514/3.10007
    [19] 刘晨.复杂燃烧流场数值模拟方法研究[D].南京: 南京航空航天大学, 2009.
  • 加载中
图(10)
计量
  • 文章访问数:  3159
  • HTML全文浏览量:  347
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-21
  • 修回日期:  2013-10-22
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回