Impact analysis of shock environment from floating shock platform on equipment response
-
摘要: 对浮动冲击平台提供给设备的冲击环境及舰载设备在不同冲击环境下的响应进行了数值模拟和理论分析。以美国中型浮动冲击平台为计算模型,将设备基座的冲击环境与德国规范BV 043-85进行了比较,为分析两个体系在设备抗冲击要求中谱加速度的差异,对不同舰载设备进行数值模拟计算,并通过虚拟约束边界模态方法,提出不同冲击环境下基础激励的多自由度系统响应的计算方法。数值分析及理论计算结果表明:冲击谱中谱加速度对舰载设备响应影响较小,而谱位移和谱速度对设备响应有较大影响,理论计算得到的多自由度系统响应与数值模拟结果较一致,同时在进行浮动冲击平台设计时可不考虑谱加速度对设备响应的影响。Abstract: The shock environment of floating shock platform for the equipment and the response of ship board equipment under different shock environment were studied by numerical simulation and theoretical analysis. Based on the calculation model of American intermediate floating shock platform, the shock environment of equipment base was compared with German BV specification. In order to analyze the difference of spectrum acceleration between the two systems in impact requirements of the equipment, numerical simulations for different ship board equipment were carried out. Through the modal method of virtual constraint boundary, a model for the multi-degree freedom system with basic excitation under different shock environment was proposed. Numerical analysis and theoretical results show that the spectrum acceleration of shock spectrum has little effect on the response of ship board equipment, but spectrum displacement and velocity have significant effect on equipment response. The response of multi-degree freedom system analyzed by theoretical calculations is consistent with the numerical simulation results. Meanwhile, during the design of floating shock platform, the influence of spectrum acceleration on equipment response does not need to be considered.
-
表 1 不同基础激励的系统位移响应幅值
Table 1. The amplitude of displacement response
基础激励 A/cm 子结构1 子结构2 子结构3 基座 初始冲击环境 1.7 0.9 2.6 0.5 a=280g 1.8 0.9 2.5 0.5 v=4 m/s 1.5 1.8 3.9 0.9 d=5 cm 1.6 2.3 2.6 1.1 -
[1] 汪玉, 华宏星.舰船现代冲击理论及应用[M].北京: 科学出版社, 2005: 185-195. [2] 李国华, 李玉节, 张效慈.浮动冲击平台水下爆炸冲击谱测量与分析[J].船舶力学, 2000, 4(2): 51-60. http://www.cqvip.com/Main/Detail.aspx?id=4326902Li Guo-hua, Li Yu-jie, Zhang Xiao-ci. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform[J]. Journal of Ship Mechanics, 2000, 4(2): 51-60. http://www.cqvip.com/Main/Detail.aspx?id=4326902 [3] 刘建湖, 潘建强, 何斌.各主要海军国家设备抗冲击标准之比较[J].应用科技, 2010, 37(9): 17-25. http://d.wanfangdata.com.cn/Periodical/yykj201009005Liu Jian-hu, Pan Jian-qiang, He Bin. Comparison of anti-shock criteria for equipment in some primary navy countries[J]. Applied Science and Technology, 2010, 37(9): 17-25. http://d.wanfangdata.com.cn/Periodical/yykj201009005 [4] 张玮.利用浮动冲击平台考核舰用设备抗冲击能力的数值仿真研究[J].振动与冲击, 2010, 29(12): 60-63. http://jvs.sjtu.edu.cn/CN/abstract/abstract1015.shtmlZhang Wei. Numerical simulation for shock resistivity of shipboard equipment on floating shock platform[J]. Journal of Vibration and Shock, 2010, 29(12): 60-63. http://jvs.sjtu.edu.cn/CN/abstract/abstract1015.shtml [5] 梁卓中, 陈立贤.应用美规MIL-STD-901D标准水中爆震平台进行船舰重装备之抗震能力分析[J].科学与工程技术期刊, 2009, 5(2): 35-50. http://www.airitilibrary.cn/Publication/alDetailedMesh?DocID=18166563-200906-200908050043-200908050043-35-50Liang Zhuo-zhong, Chen Li-xian. Heavyweight shock resistant shipboard equipment: A numerical study using an MIL-STD-901D floating shock platform[J]. Journal of Science and Engineering Technology, 2009, 5(2): 35-50. http://www.airitilibrary.cn/Publication/alDetailedMesh?DocID=18166563-200906-200908050043-200908050043-35-50 [6] Kwon J I, Lee S G, Chung J H. Numerical simulation of MIL-S-901D heavy weight shock test of a double resiliently mounted main engine module[J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 499-505. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01819242 [7] 郑长允, 赵鹏远, 赵红光, 等.设备缓冲平台在水下爆炸载荷作用下冲击响应分析[J].科技导报, 2012, 30(18): 37-40. http://www.cnki.com.cn/Article/CJFDTotal-KJDB201218023.htmZheng Chang-yun, Zhao Peng-yuan, Zhao Hong-guang, et al. Shock response of buffer platform for equipment in under-water explosion[J]. Science and Technology Review, 2012, 30(18): 37-40. http://www.cnki.com.cn/Article/CJFDTotal-KJDB201218023.htm [8] 姚熊亮, 戴绍仕, 周其新, 等.船体与设备一体化抗冲击分析[J].爆炸与冲击, 2009, 29(4): 367-374. doi: 10.11883/1001-1455(2009)04-0367-08Yao Xiong-liang, Dai Shao-shi, Zhou Qi-xin, et al. Numerical experiment methods for ship hull and equipment integrated analysis on shock resistance of shipboard equipments[J]. Explosion and Shock Waves, 2009, 29(4): 367-374. doi: 10.11883/1001-1455(2009)04-0367-08 [9] Zhang A M, Zhou W X, Wang S P, et al. Dynamic response of the non-contact underwater explosions on naval equipment[J]. Marine Structures, 2011, 24(4): 396-411. http://www.sciencedirect.com/science/article/pii/S0951833911000487 [10] MIL-S-901D Shock tests high impact shipboard machinery, equipment, and systems, requirement[S]. US NAVY, 1989. [11] 温建明, 冯奇.弹性限位浮筏隔振系统的动力学建模与算法[J].船舶力学, 2010, 14(5): 549-555. http://www.cqvip.com/QK/91784A/20105/34042881.htmlWen Jian-ming, Feng Qi. Model and algorithm for floating raft with elastic limiters[J]. Journal of Ship Mechanics, 2010, 14(5): 549-555. http://www.cqvip.com/QK/91784A/20105/34042881.html [12] 邱吉宝, 向树红, 张正平.计算结构动力学[M].合肥: 中国科学技术大学出版社, 2009: 279-283. [13] 朱石坚, 何琳.船舶机械振动控制[M].北京: 国防工业出版社, 2006: 17-32. -