A novel auxetic broadside defensive structure for naval ships
-
摘要: 提出一种具有宏观负泊松比效应的新型蜂窝舷侧防护结构,通过对负泊松比效应蜂窝胞元特殊结构构型设计,实现中等弹速下良好抗爆抗冲击性能。利用有限元动力学分析软件,研究鱼雷或导弹水下对舷侧防护结构的撞击侵入和穿透过程,对比研究了不同蜂窝构型、材料、胞元尺寸和胞壁厚度对舷侧结构抗冲击性能的影响。结果表明,蜂窝防护结构具有良好的抗冲击性能,负泊松比蜂窝构型较正泊松比蜂窝构型抗冲击性能更优。Abstract: Broadside defensive structure is important for naval vessels to maintain vitality. A novel broadside defensive structure with macro negative Poisson's ratio is proposed to achieve higher anti-shock and anti-blast performance by design of auxetic honeycomb configuration. The process of an anti-ship missile impinging on and penetrating broadside structure is simulated by nonlinear finite element software. Effects of different design parameters on broadside structure, like auxetic honeycomb configurations, materials, sizes and thickness of honeycomb cell, are studied and compared. Numerical results indicate that counter-impingement capacity can be improved by adoption of auxetic broadside structure, and honeycomb cell with negative Poisson's ratio is better than that of common honeycomb cell on anti-blast performance.
-
表 1 材料参数
Table 1. Material parameters of 45 steel, TC4 and 921 steel
材料 基本参数 E/GPa ν ρ/(kg·m-3) Tm/K Tr/K 45钢 200 0.30 7 820 1 783 293 TC4 113 0.33 4 510 1 920 293 921钢 200 0.30 7 830 1 763 293 材料 Johnson-Cook本构模型参数 A/MPa B/MPa C n m 45钢 507 320 0.064 0.280 1.06 TC4 1 130 250 0.032 0.200 1.00 921钢 898 356 0.022 0.586 1.05 材料 Johnson-Cook失效模型参数 D1 D2 D3 D4 D5 45钢 0.1 0.76 1.57 0.005 -0.84 TC4 0 0.33 0.48 0.004 3.90 921钢 0.8 2.10 0 0.002 0.60 表 2 弹体剩余速度
Table 2. Residual velocity of missiles
蜂窝构型 h/mm 蜂窝材料 vr/(m·s-1) v0=80 m·s-1 v0=200 m·s-1 v0=300 m·s-1 5 45钢 0 131 249 8 45钢 0 110 239 正泊松比 10 45钢 0 90 236 5 921钢 0 74 236 5 TC4 0 101 253 5 45钢 0 125 241 8 45钢 0 103 227 负泊松比 10 45钢 0 86 208 5 921钢 0 71 240 5 TC4 0 80 252 常规防护结构 5 45钢 0 128 231 表 3 不同胞元层数下弹体剩余速度对比
Table 3. Residual velocity of missiles with different cell layers
N vr/(m·s-1) v0=80 m·s-1 v0=200 m·s-1 v0=300 m·s-1 2 0 0 254 3 0 0 253 5 0 29.5 258 -
[1] Balandin D V, Bolotnik N N, Pilkey W D. Optimal protection from impact, shock and vibration[M]. Amsterdam: Gordon and Breach Science Publishers, 1998. [2] 朱锡, 张振华, 刘润泉, 等.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004, 24(2): 134-139. http://www.bzycj.cn/article/id/9932Zhu Xi, Zhang Zhen-hua, Liu Rui-quan, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock Waves, 2004, 24(2): 134-139. http://www.bzycj.cn/article/id/9932 [3] 杜志鹏, 李晓彬, 夏利娟, 等.反舰导弹攻击舰船舷侧防护结构过程数值仿真[J].哈尔滨工程大学学报, 2006, 27(4): 484-487.Du Zhi-peng, Li Xiao-bin, Xia Li-Juan, et al. Numerical simulation of anti-ship missile attack warship broadside process[J]. Journal of Harbin Engineering University, 2006, 27(6): 484-487. [4] 姚熊亮, 侯明亮, 李青, 等. Y型舷侧结构抗冲击性能数值仿真实验研究[J].哈尔滨工程大学学报, 2006, 27(6): 796-801. http://www.cqvip.com/Main/Detail.aspx?id=23531357Yao Xiong-liang, Hou Ming-liang, Li Qing, et al. Numerical simulation research on counter-impingement capability Y-shape shipboard side structure[J]. Journal of Harbin Engineering University, 2006, 27(6): 796-801. http://www.cqvip.com/Main/Detail.aspx?id=23531357 [5] 李青, 吴广明.水面舰艇舷侧抗冲击防护结构形式初探[J].中国舰船研究, 2008, 3(3): 26-29. http://d.wanfangdata.com.cn/Periodical/zgjcyj200803006 [6] 张延昌, 王自力, 顾金兰, 等.夹层板在舰船舷侧防护结构中的应用[J].中国造船, 2009, 50(4): 36-44. http://d.wanfangdata.com.cn/Periodical/zgzc200904006Zhang Yan-chang, Wang Zi-li, Gu Jin-lan, et al. Application of sandwich panel in anti-shock design of warship's side structure[J]. Shipbuilding of China, 2009, 50(4): 36-44. http://d.wanfangdata.com.cn/Periodical/zgzc200904006 [7] Lorna J G, Michael F A. Cellular solids: Structure and properties[M]. Cambridge University Press, 2005. [8] Klintworth J W, Stronge W J. Plane punch indentation of a ductile honeycomb[J]. International Journal of Mechanical Sciences, 1989, 31(5): 359-378. https://www.sciencedirect.com/science/article/pii/002074038990060X [9] Kim T, Zhao C Y, Lu T J, et al. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials, 2004, 36(8): 767-780. https://www.sciencedirect.com/science/article/pii/S0167663603001406 [10] Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Computers and Structures, 1998, 68(4): 343-367. https://www.sciencedirect.com/science/article/abs/pii/S0045794998000674 [11] Alderson A. A triumph of lateral thought[J]. Chemistry & Industry, 1999, 17: 384-391. http://web.mit.edu/course/3/3.91/www/slides/Auxetic_Foams.pdf [12] 赵海鸥. LS-DYNA动力分析指南[M].北京: 兵器工业出版社, 2003.