• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

氢气/丙烷/空气预混气体爆轰性能的实验研究

程关兵 李俊仙 李书明 瞿红春

程关兵, 李俊仙, 李书明, 瞿红春. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
引用本文: 程关兵, 李俊仙, 李书明, 瞿红春. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
Citation: Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06

氢气/丙烷/空气预混气体爆轰性能的实验研究

doi: 10.11883/1001-1455(2015)02-0249-06
基金项目: 中央高校基本科研业务费专项项目(ZXH2012J001)
详细信息
    作者简介:

    程关兵(1977—), 男, 博士, 讲师, forrest_cgb@163.com

  • 中图分类号: O381

An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures

  • 摘要: 通过采用压力传感器和烟灰板两种测试设备,开展了常温常压下氢气/丙烷和空气混合气体爆轰性能的实验研究。实验过程中观察到自持爆轰波,爆轰速度比值在0.99~1之间,爆轰压力比值在0.8~1.2之间。爆轰胞格尺寸在10~50 mm范围内,建立了爆轰胞格尺寸和化学诱导长度的关系式。随着丙烷不断添加,爆轰速度减小,而爆轰压力和胞格尺寸增加。这种变化趋势起初较快,而后变缓。因为起初氢气摩尔分数较大,混合气体趋向于氢气/空气的爆轰性能;而后因丙烷摩尔质量较大,丙烷逐渐起主要作用,混合气体表现出丙烷/空气的爆轰性能。
  • 图  1  实验设备系统图

    Figure  1.  Sketch of experimental setup

    图  2  爆轰速度和压力测量原理图

    Figure  2.  Example of determination of detonation velocity and pressure for the mixtures

    图  3  爆轰速度

    Figure  3.  Detonation velocity

    图  4  爆轰压力

    Figure  4.  Detonation pressure

    图  5  爆轰胞格结构

    Figure  5.  Detonation front structure

    图  6  胞格尺寸

    Figure  6.  Detonation cell size

    图  7  化学诱导长度

    Figure  7.  Chemical induction length

    表  1  混合气体爆轰性能参数的理论值

    Table  1.   CJ detonation theoretical values of the studied mixtures

    xw(H2)/%w(C3H8)/%vCJ/(km·s-1)pCJ/MPaLi/mm
    0.54.3595.651.8391.8751.348 3
    0.66.3893.621.8461.8491.243 0
    0.79.5990.411.8571.8271.106 6
    0.815.3884.621.8741.7920.928 3
    0.929.0370.971.9091.7320.674 7
    0.9546.3453.661.9421.6810.487 9
    1.0100.0002.0151.5990.229 1
    下载: 导出CSV
  • [1] Desbordes D. A study of deflagration-to-detonation transition[R]. Poitiers, France: Laboratory of Combustion and Detonation, 1993.
    [2] Ciccarelli G, Dorofeev S B. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550. https://www.sciencedirect.com/science/article/pii/S0360128507000639
    [3] 卢捷, 宁建国, 王成, 等.煤气火焰传播规律及其加速机理研究[J].爆炸与冲击, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960

    Lu Jie, Ning Jian-guo, Wang Cheng, et al. Study on flame propagation and acceleration mechanism of city coal gas[J]. Explosion and Shock Waves, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960
    [4] Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen and Energy, 2004, 29(8): 867-879. https://www.sciencedirect.com/science/article/pii/S0360319903002519
    [5] Tang C L, Huang Z H, Jin C, et al. Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flame[J]. International Journal of Hydrogen and Energy, 2008, 33(18): 4906-4914. https://www.sciencedirect.com/science/article/pii/S0360319908007702
    [6] Takita K, Niioka T. On detonation behavior of mixed fuels[J]. Shock Waves, 1996, 6(2): 16-66. doi: 10.1007/BF02515188
    [7] Matignon C. Etude de la détonation de deux mélanges stoechiométriques(H2 /CH4/O2 /N2 et CH4/C2H6/O2 /N2): Influence de la proportion relative des deux combustibles et de la températur initiale élevée[D]. Poitiers: University of Poitiers, 2000.
    [8] Bozier O, Sorin R, Zitoun R, et al. Detonation characteristics of H2-natural gas-air mixtures[C]//Proceeding of European Combustion Meeting. Vienna, Austria: German Section of the Combustion Institute, 2009: 14-17.
    [9] Sorin R, Bozier O, Zitoun R, et al. Deflagration to detonation transition in binary fuels H2/CH4 with air mixtures[C]//Proceeding of 22nd ICDERS. Minsk, Belarus: Heat and Mass Transfer Institute of National Academy of Science of Belarus, 2009: 27-31.
    [10] Chaumeix N, Pichon S, Lafosse F, et al. Role of chemical kinetics on the detonation properties of hydrogen /natural gas/air mixtures[J]. International Journal of Hydrogen and Energy, 2007, 32(13): 2216-2226. https://www.sciencedirect.com/science/article/pii/S0360319907002145
    [11] 孙锦山, 朱建士.理论爆轰物理[M].北京: 国防工业出版社, 1995.
    [12] Smith G P, Golden D, Frenklach M, et al. GRI-Mech 3.0[Z]. 1999.
  • 期刊类型引用(10)

    1. 吴敏宣,白桥栋,翁春生,孟豪龙,韩家祥,张世健,王研艳. C_2H_4/CH_4/H_2混合气旋转爆轰波传播特性数值模拟研究. 推进技术. 2022(11): 303-314 . 百度学术
    2. 陈长坤,徐童,史聪灵,赵小龙,张宇伦. 隧道内可燃液体蒸气爆燃超压缩尺寸实验研究. 清华大学学报(自然科学版). 2020(03): 278-284 . 百度学术
    3. 李玉艳,蒋榕培,李智鹏,徐森,潘峰,解立峰. C_2H_4/N_2O预混气体的爆轰性能与火焰淬熄特性. 高压物理学报. 2020(04): 166-174 . 百度学术
    4. 姜楠,秘义行,吕东,王璐,慕洋洋. 催化重整单元氢气气团爆炸超压分析. 爆炸与冲击. 2019(02): 179-187 . 本站查看
    5. 钟巍,田宙,寿列枫. 基于SD_Toolbox和Cantera的气体ZND爆轰结构参数计算与惰性气体阻尼效应研究. 工业安全与环保. 2019(07): 10-14 . 百度学术
    6. 苏航,蒋利桥,曹海亮,刘秦飞,李言钦,汪小憨,赵黛青. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验. 爆炸与冲击. 2018(02): 381-389 . 本站查看
    7. 钟巍,姚成宝,王宏亮,寿列枫,浦锡锋,田宙. 基于SD_Toolbox和Cantera的气体C-J爆轰参数计算及规律分析. 科学技术与工程. 2018(23): 185-193 . 百度学术
    8. 赵焕娟,John H.S.Lee,张英华,严屹然. 爆轰波三波点擦除烟迹表面积碳机制. 工程科学学报. 2017(03): 335-341 . 百度学术
    9. 赵焕娟,J.H.S.Lee,张英华,钱新明,严屹然. 氩气对乙炔预混气爆轰不稳定性的影响及量化分析. 爆炸与冲击. 2017(04): 577-584 . 本站查看
    10. 周宁,耿莹,冯磊,刘超,张冰冰. 点火能对气体爆炸过程中薄壁管道应变规律的实验研究(英文). 高压物理学报. 2016(03): 200-206 . 百度学术

    其他类型引用(8)

  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3432
  • HTML全文浏览量:  421
  • PDF下载量:  553
  • 被引次数: 18
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2014-04-23
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回