An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures
-
摘要: 通过采用压力传感器和烟灰板两种测试设备,开展了常温常压下氢气/丙烷和空气混合气体爆轰性能的实验研究。实验过程中观察到自持爆轰波,爆轰速度比值在0.99~1之间,爆轰压力比值在0.8~1.2之间。爆轰胞格尺寸在10~50 mm范围内,建立了爆轰胞格尺寸和化学诱导长度的关系式。随着丙烷不断添加,爆轰速度减小,而爆轰压力和胞格尺寸增加。这种变化趋势起初较快,而后变缓。因为起初氢气摩尔分数较大,混合气体趋向于氢气/空气的爆轰性能;而后因丙烷摩尔质量较大,丙烷逐渐起主要作用,混合气体表现出丙烷/空气的爆轰性能。Abstract: The paper is aimed to experimentally probe the detonation characteristics of the binary fuel hydrogen/propane-air mixture. The experiments were conducted in an obstructed cylindrical tube with a 92-mm inner diameter and a 12-m length at normal pressure and temperature. Eleven instrument ports and eleven piezoelectric pressure transducers were adopted on the tube wall surface. A Schelkin spiral with a blockage ratio of 0.5 and a pitch with inner diameter as the tube and with the length of 3 m were used to accelerate the flame propagation until the detonation initiated. The studied binary fuel mixtures with equivalence ratio of 1.1 and hydrogen molar fraction varying from 0.5 to 1.0 were prepared by the partial pressure and ignited via a spark plug at about 15-mJ discharge energy. The detonation characteristic parameters such as velocity, pressure and cell size were achieved with pressure transducers and smoking foils, respectively. It can be therefore concluded that the self-sustained detonation is observed as follows: (ⅰ) detonation velocity ratiov/vCJ varies from 0.99 to 1.0 and pressure ratio p/pCJ changes from 0.8 to 1.2; (ⅱ) detonation cell size varies from 10 mm to 50 mm. When propane is added to hydrogen/air mixtures, the detonation velocity decreases, but the pressure and cell size inversely increase. The variation trends of the detonation parameters at the beginning change quickly because the detonation characteristics of hydrogen/propane-air mixtures are similar to those of hydrogen/air due to the larger hydrogen molar fraction. Afterwards, the trends gradually slow down because the increasing molar fraction of propane with heavier molecular mass in the mixtures which plays a dominant role in the binary fuels. At last, a relationship between detonation cell size and ZND chemical induction length was obtained. Thus, our conclusion can provide the experimental data in the hydrogen explosion hazard prevention.
-
表 1 混合气体爆轰性能参数的理论值
Table 1. CJ detonation theoretical values of the studied mixtures
x w(H2)/% w(C3H8)/% vCJ/(km·s-1) pCJ/MPa Li/mm 0.5 4.35 95.65 1.839 1.875 1.348 3 0.6 6.38 93.62 1.846 1.849 1.243 0 0.7 9.59 90.41 1.857 1.827 1.106 6 0.8 15.38 84.62 1.874 1.792 0.928 3 0.9 29.03 70.97 1.909 1.732 0.674 7 0.95 46.34 53.66 1.942 1.681 0.487 9 1.0 100.00 0 2.015 1.599 0.229 1 -
[1] Desbordes D. A study of deflagration-to-detonation transition[R]. Poitiers, France: Laboratory of Combustion and Detonation, 1993. [2] Ciccarelli G, Dorofeev S B. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550. https://www.sciencedirect.com/science/article/pii/S0360128507000639 [3] 卢捷, 宁建国, 王成, 等.煤气火焰传播规律及其加速机理研究[J].爆炸与冲击, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960Lu Jie, Ning Jian-guo, Wang Cheng, et al. Study on flame propagation and acceleration mechanism of city coal gas[J]. Explosion and Shock Waves, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960 [4] Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen and Energy, 2004, 29(8): 867-879. https://www.sciencedirect.com/science/article/pii/S0360319903002519 [5] Tang C L, Huang Z H, Jin C, et al. Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flame[J]. International Journal of Hydrogen and Energy, 2008, 33(18): 4906-4914. https://www.sciencedirect.com/science/article/pii/S0360319908007702 [6] Takita K, Niioka T. On detonation behavior of mixed fuels[J]. Shock Waves, 1996, 6(2): 16-66. doi: 10.1007/BF02515188 [7] Matignon C. Etude de la détonation de deux mélanges stoechiométriques(H2 /CH4/O2 /N2 et CH4/C2H6/O2 /N2): Influence de la proportion relative des deux combustibles et de la températur initiale élevée[D]. Poitiers: University of Poitiers, 2000. [8] Bozier O, Sorin R, Zitoun R, et al. Detonation characteristics of H2-natural gas-air mixtures[C]//Proceeding of European Combustion Meeting. Vienna, Austria: German Section of the Combustion Institute, 2009: 14-17. [9] Sorin R, Bozier O, Zitoun R, et al. Deflagration to detonation transition in binary fuels H2/CH4 with air mixtures[C]//Proceeding of 22nd ICDERS. Minsk, Belarus: Heat and Mass Transfer Institute of National Academy of Science of Belarus, 2009: 27-31. [10] Chaumeix N, Pichon S, Lafosse F, et al. Role of chemical kinetics on the detonation properties of hydrogen /natural gas/air mixtures[J]. International Journal of Hydrogen and Energy, 2007, 32(13): 2216-2226. https://www.sciencedirect.com/science/article/pii/S0360319907002145 [11] 孙锦山, 朱建士.理论爆轰物理[M].北京: 国防工业出版社, 1995. [12] Smith G P, Golden D, Frenklach M, et al. GRI-Mech 3.0[Z]. 1999. 期刊类型引用(10)
1. 吴敏宣,白桥栋,翁春生,孟豪龙,韩家祥,张世健,王研艳. C_2H_4/CH_4/H_2混合气旋转爆轰波传播特性数值模拟研究. 推进技术. 2022(11): 303-314 . 百度学术
2. 陈长坤,徐童,史聪灵,赵小龙,张宇伦. 隧道内可燃液体蒸气爆燃超压缩尺寸实验研究. 清华大学学报(自然科学版). 2020(03): 278-284 . 百度学术
3. 李玉艳,蒋榕培,李智鹏,徐森,潘峰,解立峰. C_2H_4/N_2O预混气体的爆轰性能与火焰淬熄特性. 高压物理学报. 2020(04): 166-174 . 百度学术
4. 姜楠,秘义行,吕东,王璐,慕洋洋. 催化重整单元氢气气团爆炸超压分析. 爆炸与冲击. 2019(02): 179-187 . 本站查看
5. 钟巍,田宙,寿列枫. 基于SD_Toolbox和Cantera的气体ZND爆轰结构参数计算与惰性气体阻尼效应研究. 工业安全与环保. 2019(07): 10-14 . 百度学术
6. 苏航,蒋利桥,曹海亮,刘秦飞,李言钦,汪小憨,赵黛青. 微小空间内丙烷/空气火焰传播特性与加氢爆燃实验. 爆炸与冲击. 2018(02): 381-389 . 本站查看
7. 钟巍,姚成宝,王宏亮,寿列枫,浦锡锋,田宙. 基于SD_Toolbox和Cantera的气体C-J爆轰参数计算及规律分析. 科学技术与工程. 2018(23): 185-193 . 百度学术
8. 赵焕娟,John H.S.Lee,张英华,严屹然. 爆轰波三波点擦除烟迹表面积碳机制. 工程科学学报. 2017(03): 335-341 . 百度学术
9. 赵焕娟,J.H.S.Lee,张英华,钱新明,严屹然. 氩气对乙炔预混气爆轰不稳定性的影响及量化分析. 爆炸与冲击. 2017(04): 577-584 . 本站查看
10. 周宁,耿莹,冯磊,刘超,张冰冰. 点火能对气体爆炸过程中薄壁管道应变规律的实验研究(英文). 高压物理学报. 2016(03): 200-206 . 百度学术
其他类型引用(8)
-