• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

氢气/丙烷/空气预混气体爆轰性能的实验研究

程关兵 李俊仙 李书明 瞿红春

程关兵, 李俊仙, 李书明, 瞿红春. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
引用本文: 程关兵, 李俊仙, 李书明, 瞿红春. 氢气/丙烷/空气预混气体爆轰性能的实验研究[J]. 爆炸与冲击, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06
Citation: Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06

氢气/丙烷/空气预混气体爆轰性能的实验研究

doi: 10.11883/1001-1455(2015)02-0249-06
基金项目: 中央高校基本科研业务费专项项目(ZXH2012J001)
详细信息
    作者简介:

    程关兵(1977—), 男, 博士, 讲师, forrest_cgb@163.com

  • 中图分类号: O381

An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures

  • 摘要: 通过采用压力传感器和烟灰板两种测试设备,开展了常温常压下氢气/丙烷和空气混合气体爆轰性能的实验研究。实验过程中观察到自持爆轰波,爆轰速度比值在0.99~1之间,爆轰压力比值在0.8~1.2之间。爆轰胞格尺寸在10~50 mm范围内,建立了爆轰胞格尺寸和化学诱导长度的关系式。随着丙烷不断添加,爆轰速度减小,而爆轰压力和胞格尺寸增加。这种变化趋势起初较快,而后变缓。因为起初氢气摩尔分数较大,混合气体趋向于氢气/空气的爆轰性能;而后因丙烷摩尔质量较大,丙烷逐渐起主要作用,混合气体表现出丙烷/空气的爆轰性能。
  • 图  1  实验设备系统图

    Figure  1.  Sketch of experimental setup

    图  2  爆轰速度和压力测量原理图

    Figure  2.  Example of determination of detonation velocity and pressure for the mixtures

    图  3  爆轰速度

    Figure  3.  Detonation velocity

    图  4  爆轰压力

    Figure  4.  Detonation pressure

    图  5  爆轰胞格结构

    Figure  5.  Detonation front structure

    图  6  胞格尺寸

    Figure  6.  Detonation cell size

    图  7  化学诱导长度

    Figure  7.  Chemical induction length

    表  1  混合气体爆轰性能参数的理论值

    Table  1.   CJ detonation theoretical values of the studied mixtures

    xw(H2)/%w(C3H8)/%vCJ/(km·s-1)pCJ/MPaLi/mm
    0.54.3595.651.8391.8751.348 3
    0.66.3893.621.8461.8491.243 0
    0.79.5990.411.8571.8271.106 6
    0.815.3884.621.8741.7920.928 3
    0.929.0370.971.9091.7320.674 7
    0.9546.3453.661.9421.6810.487 9
    1.0100.0002.0151.5990.229 1
    下载: 导出CSV
  • [1] Desbordes D. A study of deflagration-to-detonation transition[R]. Poitiers, France: Laboratory of Combustion and Detonation, 1993.
    [2] Ciccarelli G, Dorofeev S B. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550. https://www.sciencedirect.com/science/article/pii/S0360128507000639
    [3] 卢捷, 宁建国, 王成, 等.煤气火焰传播规律及其加速机理研究[J].爆炸与冲击, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960

    Lu Jie, Ning Jian-guo, Wang Cheng, et al. Study on flame propagation and acceleration mechanism of city coal gas[J]. Explosion and Shock Waves, 2004, 24(4): 305-311. http://www.bzycj.cn/article/id/9960
    [4] Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen and Energy, 2004, 29(8): 867-879. https://www.sciencedirect.com/science/article/pii/S0360319903002519
    [5] Tang C L, Huang Z H, Jin C, et al. Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flame[J]. International Journal of Hydrogen and Energy, 2008, 33(18): 4906-4914. https://www.sciencedirect.com/science/article/pii/S0360319908007702
    [6] Takita K, Niioka T. On detonation behavior of mixed fuels[J]. Shock Waves, 1996, 6(2): 16-66. doi: 10.1007/BF02515188
    [7] Matignon C. Etude de la détonation de deux mélanges stoechiométriques(H2 /CH4/O2 /N2 et CH4/C2H6/O2 /N2): Influence de la proportion relative des deux combustibles et de la températur initiale élevée[D]. Poitiers: University of Poitiers, 2000.
    [8] Bozier O, Sorin R, Zitoun R, et al. Detonation characteristics of H2-natural gas-air mixtures[C]//Proceeding of European Combustion Meeting. Vienna, Austria: German Section of the Combustion Institute, 2009: 14-17.
    [9] Sorin R, Bozier O, Zitoun R, et al. Deflagration to detonation transition in binary fuels H2/CH4 with air mixtures[C]//Proceeding of 22nd ICDERS. Minsk, Belarus: Heat and Mass Transfer Institute of National Academy of Science of Belarus, 2009: 27-31.
    [10] Chaumeix N, Pichon S, Lafosse F, et al. Role of chemical kinetics on the detonation properties of hydrogen /natural gas/air mixtures[J]. International Journal of Hydrogen and Energy, 2007, 32(13): 2216-2226. https://www.sciencedirect.com/science/article/pii/S0360319907002145
    [11] 孙锦山, 朱建士.理论爆轰物理[M].北京: 国防工业出版社, 1995.
    [12] Smith G P, Golden D, Frenklach M, et al. GRI-Mech 3.0[Z]. 1999.
  • 加载中
推荐阅读
矩形管下气相螺旋爆轰的结构及传播方式
贾旭飞 等, 爆炸与冲击, 2024
磁场效应对甲烷爆炸影响的机理
高建村 等, 爆炸与冲击, 2023
Cf3i和co2抑制甲烷-空气爆炸实验研究
程方明 等, 爆炸与冲击, 2022
氢气-甲烷-乙醇混合燃料的爆炸压力特性
郭宏展 等, 爆炸与冲击, 2023
多种材质障碍物对甲烷-氢气预混燃气的促爆影响
焦一飞 等, 高压物理学报, 2024
球形非金属材料对甲烷掺氢爆炸抑制机理研究
唐毅 等, 高压物理学报, 2022
圆柱形障碍物对2h2+o2+nar预混气体的再起爆实验研究
刘虎 等, 高压物理学报, 2023
The effect of lactic acid bacteria on lipid metabolism and flavor of fermented sausages
Xia, Lingyan et al., FOOD BIOSCIENCE, 2023
H2 and ch4 adsorption on coal: insights from experiment and mathematical model
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025
Cumulative damage effect and stability analysis of the rock slope with a locked segment under cyclic blasting
LIU Kangqi et al., EXPLOSION AND SHOCK WAVES, 2025
Powered by
图(7) / 表(1)
计量
  • 文章访问数:  3528
  • HTML全文浏览量:  433
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2014-04-23
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回