Optimization design for priming parameters of two-point explosion based on gray theory
-
摘要: 针对混凝土两点爆炸起爆参数选择问题, 提出了一种基于灰色理论的参数优化方法。通过正交试验方法设计试验方案, 运用AUTODYN软件进行了不同起爆参数组合条件下的静爆试验, 计算了起爆参数与爆坑直径、爆坑深度的关联系数和关联度, 进行了单目标因素优化和多目标因素优化, 确定了一组各因素的优选组合, 并进行了试验验证。验证结果表明:采用优化的起爆参数时, 爆坑直径增大(4~42)%, 左爆坑深度增大(0~29)%, 右爆坑深度增大(0~32)%, 两点爆炸混凝土靶体的毁伤效果得到明显改善。Abstract: Aimed at the selection problem of priming parameters of two-point explosion in concrete, a method for optimizing the parameters was proposed based on the gray theory.The experimental program was developed by the orthogonal experimental design technique, static explosion experiments were simulated by the software AUTODYN under different priming parameters.The gray relational degree and the gray incidence coefficient between the priming parameters and crater diameter as well as crater depth were calculated.The optimization of the priming parameters was done based on the single-objective function and the multi-objective function, and the additional production experiments were completed.The results show that the crater diameter increases 4%-42%, the left crater depth increases(0-29)%and the right crater depth increases(0-32)%by means of the optimized parameters, the damage effect of two-point explosion in concrete is improved than before.
-
Key words:
- mechanics of explosion /
- gray theory /
- relational degree /
- concrete /
- orthogonal experiment /
- optimization
-
表 1 正交试验因素水平
Table 1. Factor level of orthogonal experiment
水平 α β T/μs 水平1 12.500 0.000 0 水平2 15.625 0.116 25 水平3 18.250 0.232 50 表 2 正交试验设计方案
Table 2. Design schemes of orthogonal experiment
工况 L1/mm L2/mm T/μs 1 12.500 0.000 0 2 12.500 0.116 25 3 12.500 0.232 50 4 15.625 0.000 50 5 15.625 0.116 0 6 15.625 0.232 25 7 18.250 0.000 25 8 18.250 0.116 50 9 18.250 0.232 0 表 3 正交试验各序列区间值像
Table 3. Sequences region value of orthogonal experiment
工况 序列区间值像 L1 L2 T d h1 h2 1 0.0 0.0 0.0 0.238 1.0 0.333 2 0.0 0.5 0.5 0.095 0.2 0.889 3 0.0 1.0 1.0 0.000 0.2 0.667 4 0.5 0.0 1.0 0.333 0.2 0.111 5 0.5 0.5 0.0 0.524 0.2 0.333 6 0.5 1.0 0.5 0.476 0.6 1.000 7 1.0 0.0 0.5 0.714 0.4 0.000 8 1.0 0.5 1.0 0.952 0.2 0.333 9 1.0 1.0 0.0 1.000 0.0 0.667 表 4 不同因素在不同水平下
Table 4. Gray relational degrees and gray incidence coefficients between crater diamemter and different factors at different levels
工况 关联度系数 L1 L2 T 1 0.627 0.627 0.627 2 0.808 0.497 0.497 3 1.000 0.286 0.286 4 0.705 0.546 0.375 5 0.943 0.943 0.433 6 0.943 0.433 0.943 7 0.583 0.359 0.651 8 0.893 0.469 0.893 9 1.000 1.000 0.286 关联度 0.834 0.573 0.554 表 5 不同因素在不同水平下对左侧爆坑深度的关联度系数和关联度
Table 5. Gray relational degrees and gray incidence coefficients between left crater depth and different factors at different levels
工况 关联度系数 L1 L2 T 1 0.444 0.444 0.444 2 0.800 0.727 0.727 3 0.800 0.500 0.500 4 0.727 0.800 0.500 5 0.727 0.727 0.800 6 0.889 0.667 0.889 7 0.571 0.667 0.889 8 0.500 0.727 0.500 9 0.444 0.444 1.000 关联度 0.656 0.634 0.694 表 6 不同因素在不同水平下对右侧爆坑深度的关联度系数和关联度
Table 6. Gray relational degrees and gray incidence coefficients between right crater depth and different factors at different levels
工况 关联度系数 L1 L2 T 1 0.678 0.678 0.678 2 0.441 0.643 0.643 3 0.512 0.678 0.678 4 0.643 0.863 0.441 5 0.807 0.808 0.678 6 0.583 1.000 0.583 7 0.412 1.000 0.583 8 0.512 0.807 0.512 9 0.678 0.678 0.512 关联度 0.585 0.795 0.590 表 7 单指标下平均灰色关联度系数
Table 7. Average gray incidence coefficient in single objective function
试验因素 水平 平均灰色关联度系数 D h1 h2 α 12.500 0.812 0.681 0.544 15.625 0.864 0.781 0.678 18.250 0.825 0.505 0.534 β 0.000 0.511 0.637 0.847 0.116 0.636 0.727 0.753 0.232 0.573 0.537 0.785 T/μs 0 0.449 0.748 0.623 25 0.697 0.835 0.603 50 0.518 0.500 0.544 表 8 多项指标灰色关联系数平均值
Table 8. Average gray incidence coefficient in multi-objective function
试验因素 灰色关联系数 1 2 3 L1 0.679 0.774 0.621 L2 0.665 0.705 0.632 T 0.607 0.712 0.521 -
[1] 邓国强, 龙汗, 周早生, 等.钻地弹砂土中聚集爆炸地冲击试验与预测[J].防护工程, 2001(3): 24-28. http://www.cqvip.com/QK/95451X/20013/5689968.html [2] 陈志林.关于多点爆炸效应的初步探讨[C]//爆炸作用及其防护学术交流会和学组会成立会.洛阳: 总参工程兵科研三所, 1988. [3] 顾文彬, 孙百连, 阳天海, 等.浅层水中沉底爆炸冲击波相互作用数值模拟[J].解放军理工大学学报:自然科学版, 2003, 4(6): 64-68. http://www.cqvip.com/Main/Detail.aspx?id=8953289Gu Wen-bin, Sun Bai-lian, Yang Tian-hai, et al. Numerical simulation of explosive shockwave interaction in shallow-layer water[J]. Journal of PLA University of Science and Technology, 2003, 4(6): 64-68. http://www.cqvip.com/Main/Detail.aspx?id=8953289 [4] 孙百连, 顾文彬, 蒋建平, 等.浅层水中沉底的两个装药爆炸的数值模拟研究[J].爆炸与冲击, 2003, 23(5): 460-465. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200305013.htmSun Bai-lian, Gu Wen-bin, Jiang Jian-ping, et al. Numerical simulation of explosion shock wave interaction in shallow-layer water[J]. Explosion and Shock Waves, 2003, 23(5): 460-465. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200305013.htm [5] 李旭东, 刘凯欣, 张光升, 等.冲击波在水泥砂浆板中的聚集效应[J].清华大学学报:自然科学版, 2008, 48(8): 1272-1275. http://d.wanfangdata.com.cn/Periodical/qhdxxb200808012Li Xu-dong, Liu Kai-xin, Zhang Guang-sheng, et al. Focusing of shock waves in cement mortar plates[J]. Journal of Tsinghua University: Science and Technology, 2008, 48(8): 1272-1275. http://d.wanfangdata.com.cn/Periodical/qhdxxb200808012 [6] 宋浦, 顾晓辉, 王晓鸣, 等.混凝土中的爆坑试验研究[J].火炸药学报, 2005, 28(2): 60-62. http://d.wanfangdata.com.cn/Periodical/hzyxb200502018Song Pu, Gu Xiao-hui, Wang Xiao-ming, et al. Experimental investigation on cratering of concrete[J]. Chinese Journal of Explosives & Propellants, 2005, 28(2): 60-62. http://d.wanfangdata.com.cn/Periodical/hzyxb200502018 [7] 叶海旺, 石文杰, 王二猛, 等.金堆城露天矿生产爆破合理微差时间的探讨[J].爆破, 2010, 27(1): 96-98. http://www.cqvip.com/Main/Detail.aspx?id=33170661Ye Hai-wang, Shi Wen-jie, Wang Er-meng, et al. Research of reasonable delay intervals in jinduicheng open-pit mine[J]. Blasting, 2010, 27(1): 96-98. http://www.cqvip.com/Main/Detail.aspx?id=33170661 [8] 穆朝民, 任辉启, 李永池, 等.变埋深条件下饱和土爆炸能量耦合系数的试验研究[J].岩土力学, 2010, 31(5): 1574-1578. http://d.wanfangdata.com.cn/Periodical/ytlx201005039Mu Chao-min, Ren Hui-qi, Li Yong-chi, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils[J]. Rock and Soil Mechanics, 2010, 31(5): 1574-1578. http://d.wanfangdata.com.cn/Periodical/ytlx201005039 [9] 华尔天, 周科, 费玉莲, 等.基于灰色理论的车门系统参数多目标优化[J].计算机集成制造系统, 2012, 18(3): 486-491. http://www.cqvip.com/QK/97749X/20123/41337341.htmlHua Er-tian, Zhou Ke, Fei Yu-lian, et al. Multi-objective optimization for automotive door parameters based on grey theory[J]. Computer Integrated Manufacturing Systems, 2012, 18(3): 486-491. http://www.cqvip.com/QK/97749X/20123/41337341.html [10] 吕锋.灰色系统关联度之分辨系数的研究[J].系统工程理论与实践, 1997, 17(6): 49-54. http://www.cnki.com.cn/Article/CJFDTotal-XTLL706.010.htmLüFeng. Research on the identification coefficient of relational grade for grey system[J]. Systems Engineering: Theory and Practice, 1997, 17(6): 49-54. http://www.cnki.com.cn/Article/CJFDTotal-XTLL706.010.htm