Safety analysis of high-pressure waterjet impacting HTPB propellant
-
摘要: 以高压水射流冲击HTPB推进剂的动态加载过程和准静态加载过程在作用压力和持续时间上的巨大差异为基础, 在水锤压力和滞止压力计算的基础上分别进行了点火模式预判, 然后以模型类比和实验方法分析了动态和准静态加载过程的安全性。结果表明, 使用出口压力在300 MPa以内的高压水射流冲击HTPB推进剂装药在动态加载过程中不会有点火起爆危险性, 但使用100M Pa以上的高压水射流冲击HTPB推进剂装药在准静态加载过程中其内部可能会发生温度突跃情况, 这可能会引起热点火、甚至热起爆。Abstract: Due to the huge differences in pressure and duration of dynamic loading process and quasistatic loading process in high-pressure water jet impacting HTPB propellant, possible ignition modes were prejudged on the basis of the calculation of water hammer pressure and stagnation pressure, and the safety of dynamic loading process and quasi-static loading process were analyzed through model analogy and experimental study respectively.The results show that there is no detonation risk in the dynamic loading process of high pressure water jet with the outlet pressure less than 300 MPa, but in the quasi-static loading process of high pressure water jet the outlet pressure of which is above 100 MPa.It is possible that internal temperature has a sudden rise, which may cause thermal ignition or even thermal explosion.
-
Key words:
- fluid mechanics /
- impact safety /
- initiation model /
- HTPB propellant /
- waterjet
-
表 1 不同出口压力水平下的水锤压力
Table 1. Water hammer pressure under different outlet pressure levels
出口 pj / MPa vj / (m·s-1) pH / MPa 1 50 316 455 2 100 447 644 3 150 547 788 4 200 632 910 5 230 678 976 6 300 774 1 115 表 2 不同出口压力下的温升突跃次数统计
Table 2. Temperature-jump frequency under different outlet pressure levels
pj/MPa N n 50 10 0 80 12 0 100 15 0 120 15 1 150 15 1 180 15 3 -
[1] Boggs T L, Atwood A I, Mulder E J. Hazards associated with solid propellants[C]//Proceedings of Solid Propellant Chemistry, Combustion and Motor Interior Ballistics. Virginia: American Institute of Aeronautics and Astronautics, 2000: 221-262. [2] Hashish M, Miller P. Cutting and washout of chemical weapons with high-pressure ammonia jets[C]//BHR Group Conference Series Publication. Bury St Edmund: Professional Engineering Publishing, 1998: 81-92. [3] 王礼立.应力波基础[M].北京: 国防工业出版社, 2010. [4] 薛胜雄.高压水射流技术工程[M].合肥: 合肥工业大学出版社, 2006. [5] 王瑞和.高压水射流破岩机理研究[M].东营: 中国石油大学出版社, 2010. [6] 卫玉章.非均匀炸药的冲击引爆综合判据[J].爆炸与冲击, 1982, 2(1): 117-121.Wei Yu-zhang. A complete criterion for shock initiation of detonation in heterogeneous explosives[J]. Explosion and Shock Waves, 1982, 2(1): 117-121. [7] Mader C L, Pimbley G H. Jet initiation of explosives[R]. LA-8647, 1981. [8] Mader C L, Pimbley G H, Bowman A L. Jet penetration of inerts and explosives[R]. LA-9527, 1982. [9] Summers D A. Waterjetting Technology[M]. London: E & FN SPON, 1995.