用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合

杨玟 王丽丽 周海兵 张树道

杨玟, 王丽丽, 周海兵, 张树道. 用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合[J]. 爆炸与冲击, 2015, 35(3): 423-427. doi: 10.11883/1001-1455(2015)03-0423-05
引用本文: 杨玟, 王丽丽, 周海兵, 张树道. 用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合[J]. 爆炸与冲击, 2015, 35(3): 423-427. doi: 10.11883/1001-1455(2015)03-0423-05
Yang Min, Wang Li-li, Zhou Hai-bing, Zhang Shu-dao. Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model[J]. Explosion And Shock Waves, 2015, 35(3): 423-427. doi: 10.11883/1001-1455(2015)03-0423-05
Citation: Yang Min, Wang Li-li, Zhou Hai-bing, Zhang Shu-dao. Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model[J]. Explosion And Shock Waves, 2015, 35(3): 423-427. doi: 10.11883/1001-1455(2015)03-0423-05

用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合

doi: 10.11883/1001-1455(2015)03-0423-05
基金项目: 国家自然科学基金项目(11072040);装备预研重点实验室基金项目(9140C690204120C69259);中国工程物理研究院科学技术发展基金项目(2012B0201028、2012B0201030)
详细信息
    作者简介:

    杨玟(1970-), 女, 博士, 副研究员, yang_min@iapcm.ac.cn

  • 中图分类号: O358

Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model

  • 摘要: 采用浮阻力模型对激波管低压缩和激光加载高压缩情况下的Richtmyer-Meshkov不稳定性诱导混合现象进行了研究。通过与实验和理论分析结果进行比较发现:为了达到好的吻合, Richtmyer-Meshkov不稳定性情况下阻力系数的取值范围(2.0~5.36)比Rayleigh-Taylor不稳定性情况下的值(3.3~4.0)宽得多; 而在Richtmyer-Meshkov不稳定性情况下, 高压缩时阻力系数的不确定度(约为3.36)明显高于低压缩时的值(约为1.46), 模型的进一步完善还有待于更精确实验的验证。研究显示:指数律经验公式中指数随工况的不同而显著变化, 目前工程设计中采用指数律经验公式是粗糙的。
  • 图  1  计算采用的4种不同脉冲加速度曲线

    Figure  1.  Four kinds of impulsive accelerations used in the calculation

    图  2  气泡和尖钉宽度随位移的变化

    Figure  2.  The width of bubble and spike with displacement

    图  3  Nova实验中的加速度曲线

    Figure  3.  Acceleration history for Nova experiment

    图  4  混合区宽度随位移的变化

    Figure  4.  Variaion of total width with displacement

    表  1  实验中采用的流体和脉冲加速度性质参数

    Table  1.   Fluid combinations and characteristics for impusive accerleration experiments

    No. 流体1 流体2 ρ1/(g·cm-3) ρ2/(g·cm-3) R A We Re
    1 H2O CCl2F2 1.000 1.57 1.57 0.22 4 000 2 600
    2 SF6 C4H10 0.067 0.81 12.10 0.85 1 100 8 000
    3 SF6 CCl2F2 0.067 1.57 23.40 0.92 11 000 23 000
    4 SF6 CCl2F2 0.032 1.57 49.10 0.96 6 000 25 000
    下载: 导出CSV
  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communicational Pure Applied Mathematics, 1960, 13(1): 297-319.
    [2] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Soviet Fluid Dynamics, 1969, 4(1): 101-104. doi: 10.1007/BF01015969
    [3] Dimonte G, Remington B. Richtmyer-Meshkov experiments on the Nova laser at high compression[J]. Physical Review Letters, 1993, 70(12): 1806-1809. http://www.ncbi.nlm.nih.gov/pubmed/10053391?dopt=Abstract
    [4] Dimonte G, Frerking C E, Schneider M. Richtmyer-Meshkov instability in the turbulent regime[J]. Physical Review Letters, 1995, 74(24): 4855-4858. http://europepmc.org/abstract/MED/10058616
    [5] Vetter M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability of an air/SF6interface[J]. Shock Waves, 1995, 4(5): 247-252. doi: 10.1007/BF01416035
    [6] Jourdan G, Houas L, Haas J F, et al. Thickness and volume measurements of a Richtmyer-Meshkov instability induced mixing zone in a square shock tube[J]. Journal of Fluid Mechanics, 1997, 349: 67-94. http://www.ingentaconnect.com/content/cupr/00221120/1997/00000349/00000001/art00003
    [7] Alon U, Hecht J, Ofer D, et al. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios[J]. Physical Review Letters, 1995, 74(4): 534-537. http://www.ncbi.nlm.nih.gov/pubmed/10058782
    [8] Aglitskiy Y, Velikovich A L, Karasik M, et al. Basic hydrodynamics of Richtmyer-Meshkov-type growth and os-cillations in the inertial confinement fusion-relevant conditions[J]. Philosophical Transactions of Royal Society A, 2010, 368(1916): 1739-1768. http://www.ncbi.nlm.nih.gov/pubmed/20211882
    [9] Llor A. Statistical hydrodynamic models for developed mixing instability flows[S]. Springer, 2005.
    [10] 杨玟, 王丽丽, 张树道. Rayleigh-Taylor不稳定性诱导湍流混合的数值模拟[J].工程力学, 2011, 28(6): 236-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201106035

    Yang Min, Wang Li-li, Zhang Shu-dao. Numerical simulation of turbulent mixing induced by Rayleigh-Taylor instability[J]. Engineering Mechanics, 2011, 28(6): 236-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201106035
    [11] 杨玟, 王丽丽, 张树道, 等.用湍流模型研究Richtmyer-Meshkov不稳定性诱导的湍流混合[J].空气动力学学报, 2010, 28(1): 119-123. http://www.cqvip.com/Main/Detail.aspx?id=32960053

    Yang Min, Wang Li-li, Zhang Shu-dao, et al. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model[J]. Acta Aerodynamica Sinica, 2010, 28(1): 119-123. http://www.cqvip.com/Main/Detail.aspx?id=32960053
    [12] Cheng B. Modeling chaotic mixing[J]. Nuclear Weapons Journal, 2010, 1: 8-17.
    [13] Layzer D. On the gravitational instability of two superposed fluids in a gravitational field[J]. Astrophysics Journal, 1955, 122(1): 1-12. http://www.ams.org/mathscinet-getitem?mr=71198
    [14] 杨玟, 王丽丽, 周海兵, 张树道.用浮阻力模型研究Rayleigh-Taylor不稳定性诱发混合现象[J].工程力学, 2013, 30(4): 385-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201304057

    Yang Min, Wang Li-li, Zhang Shu-dao. Study on mixing induced by Rayleigh-Taylor instability using buoyancydrag model[J]. Engineering Mechanics, 2013, 30(4): 385-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201304057
    [15] Dimonte G, Schneider M. Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories[J]. Physics of Fluids, 2000, 12(2): 304-321. doi: 10.1063/1.870309
    [16] Dimonte G, Schneider M. Turbulent Richtmyer-Meshkov instability experiments with strong radiatively driven shocks[J]. Physics of Plasmas, 1997, 4(12): 4347-4357.
    [17] Dimonte G. Nonlinear evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Physics of Plasmas, 1999, 6(5): 2009-2015. doi: 10.1063/1.873491
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  2986
  • HTML全文浏览量:  352
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-28
  • 修回日期:  2014-06-28
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回