Dynamic calibration of pressure sensors by small-scale explosive experiments in an explosion containment vessel
-
摘要: 在爆炸容器中进行小药量空中爆炸实验, 利用传感器序列测量冲击波速度, 根据冲击波Rankine-Hugoniot关系获得测点近似理论峰值压力, 从而实现压力传感器的标定, 获得的灵敏度相对误差较小。同时测量了相应的冲击波参数, 并利用Modified-Friedlander公式进行数据后处理, 结果表明固定超压拟合更接近物理事实, 固定正相时间拟合也具有较高精度。最后进行了误差分析, 发现不同传感器特性及数据后处理方法都会带来一定误差。实验结果表明这种测量和后处理方法具有较高的精度, 可以同时标定传感器和测量冲击波参数。Abstract: Air blast experiments of small-scale charges were conducted in an explosion containment vessel.The shock wave velocity was measured by sensor series.And the approximately theoretic peak pressure was determined from the shock wave velocity by using the Rankine-Hugoniot relationship. The sensor was then calibrated, and the relative error of the sensitivity was small.The shock wave parameters were measured and post processed by using the modified-Friedlander equation.The results show that the nonlinear regression by fixing the overpressure is close to the physical fact, and the fitting by fixing the duration has a high precision.Error analysis reveals that the sensor properties and the post-processing methods can produce errors.Experimental results display that the shock wave parameter measuring and post-processing method suggested has a high precision.By this suggested method, the sensor calibration and parameter measurement can be conducted simultaneously.
-
Key words:
- mechanics of explosion /
- dynamic calibration /
- air explosion /
- pressure sensor /
- blast vessel /
- shock wave /
- sensor series
-
表 1 传感器2动态标定结果
Table 1. Dynamic calibration results of sensor 2
测试编号 t1,2/μs t2, 3/μs Ma2 Δpm2/kPa U/mV k/(Pa·mV-1) 1 21.0 27.7 1.335 89 93.95 101.003 9 930.16 2 21.0 27.5 1.343 88 95.28 101.725 9 936.63 表 1 不同数据处理方法得到的冲击波参数
Table 1. Shock wave parameters by different data processing methods
测试 方法 Δpm/kPa t+/μs I/(Pa·s) α 1 实验 86.04 435.50 11.925 固定Δpm 93.95 470.02 12.478 2.018 6 固定t+ 90.19 435.50 12.290 1.604 2 2 实验 84.64 430.72 12.309 固定Δpm 95.28 469.87 12.971 1.914 4 固定t+ 92.31 430.72 12.898 1.464 3 -
[1] Ethridge N H. A procedure for reading and smoothing pressure-time data from HE and nuclear explosions[R]. Army Ballistic Research Laboratories, 1965. [2] Ismail M M, Murray S G. Study of the blast wave parameters from small scale explosions[J]. Propellants, Explosives, Pyrotechnics, 1993, 18(1): 11-17. [3] Kinney G F, Graham K J. Explosive shocks in air[M]. 2nd Edition. Berlin and New York: Springer-Verlag, 1985: 100-104. [4] 张远平.池家春.压力传感器灵敏度的动态标定及超压测量[J].高能量密度物理, 2007(2): 62-64. [5] 张衍芳, 杜红棉, 祖静.冲击波信号后期处理方法研究[J].工程与试验, 2010, 50(4): 15-18.Zhang Yan-fang, Du Hong-mian, Zu Jing. Research on post treatment method for shockwave signals[J]. Engineering and Test, 2010, 50(4): 15-18. [6] Biss M M. Characterization of blasts from laboratory-scale composite explosive charges[D]. Pennsylvania State U-niversity, 2009: 124-139. [7] Rahman S, Timofeev E, Kleine H. Pressure measurements in laboratory-scale blast wave flow fields[J]. Review of Scientific Instruments, 2007, 78(12): 125106.