Numerical simulations on effects of Al/O ratio on performance of aluminized explosives
-
摘要: 为了研究铝氧比对含铝炸药在混凝土介质中爆炸性能的影响,采用数值模拟与实验相结合的方法,针对铝氧比分别为0、0.257、0.632的含铝炸药,利用AUTODYN有限元程序建立计算模型,计算了柱形装药在混凝土介质中的爆炸破坏过程,并且得到了在比例距离为2.5~10的范围内,3种含铝炸药爆炸形成的冲击波压力时程曲线。计算结果表明:冲击波峰值压力的衰减指数随炸药的铝氧比增大而减小,衰减指数分别为2.1、1.71、1.60;另外,当含铝炸药的铝氧比为0.257时比冲击波能最大。Abstract: Aluminum to oxygen Al/O ratio is very important to the performance of aluminized explosives. In order to study the influence of the ratio on the performance of explosives in concrete, three kinds of aluminized explosives are taken into account, and their Al/O ratio are 0, 0.257 and 0.632, respectively. In this paper, the damaging process of concrete medium under explosion of cylindrical charge is numerically simulated using AUTODYN program. Meanwhile, within the range of relative distance from 2.5 to 10, shock wave pressure-time curve are obtained by means of numerical simulation and experiment. The numerical study shows that shock wave attenuation exponents are 2.10, 1.71 and 1.60, the exponents decrease with the increasing of Al/O ratio. In addition, shock wave energy is maximum when the Al/O ratio equals 0.257.
-
Key words:
- mechanics of explosion /
- Al/O ratio /
- attenuation exponent /
- concrete /
- shock wave energy
-
炸药 w/% η ρ/(g·cm-3) Q/(MJ·kg-1) D/(m·s-1) pd/GPa RDX Al wax HL0 95 0 5 0 1.673 5.879 8 325 29.39 HL15 80 15 5 0.257 1.763 6.736 8 121 23.91 HL30 65 30 5 0.632 1.865 7.594 7 879 22.21 炸药 A/GPa B/GPa R1 R2 ω HL0 694.52 13.75 4.55 1.30 0.49 HL15 1 897.54 24.77 5.83 1.72 0.35 HL30 2 225.00 21.59 5.94 1.78 0.38 表 3 数值模拟与实验结果的比较
Table 3. Comparison of experimental and simulated results
炸药 m/g d/cm R/cm H/cm 实验 数值模拟 实验 数值模拟 HL0 70 10 27.2 24.8 14.1 13.0 HL15 70 10 28.6 26.9 14.5 14.2 HL30 70 10 25.7 23.3 13.6 11.9 -
[1] Strømsøe E, Eriksen E W. Performance of high explosives in underwater applications. Part 2: Aluminized explosives[J]. Propellants, Explosives, Pyrotechnics, 1990, 15(2): 52-53. doi: 10.1002/prep.19900150204 [2] 黄菊, 王伯良, 仲倩, 等.温压炸药能量输出结构的初步研究[J].爆炸与冲击, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05Huang Ju, Wang Bo-liang, Zhong Qian, et al. A preliminary investigation on energy output structure of a thermobaric explosive[J]. Explosion and Shock Waves, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05 [3] 周霖, 杨启先.铝氧比对含铝炸药水中爆炸冲击波的影响[J].兵工学报, 2008, 29(8): 916-919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200808005Zhou Lin, Yang Qi-xian. The effect of Al/O ratio on underwater explosion shock wave of aluminium-containing explosives[J]. Acta Armamentarii, 2008, 29(8): 916-919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200808005 [4] 李金河, 赵继波, 谭多望, 等.炸药水中爆炸的冲击波性能[J].爆炸与冲击, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05Li Jin-he, Zhao Ji-bo, Tan Duo-wang, et al. Underwater shock wave performances of explosives[J]. Explosion and Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05 [5] Wang Q T, Ding J, Ying M K, et al. A study on damage properties of explosive internal-blast of concrete[J]. Advanced Materials Research, 2012, 598: 420-424. doi: 10.4028/www.scientific.net/AMR.598.420 [6] 李小雷, 聂建新, 覃剑锋, 等.含铝炸药在混凝土中爆炸效应的数值模拟研究[J].爆破, 2012, 29(3): 109-114. http://d.wanfangdata.com.cn/Periodical/bp201203027Li Xiao-lei, Nie Jian-xin, Qin Jian-feng, et al. Numerical simulation of explosion effects in concrete by aluminized explosives[J]. Blasting, 2012, 29(3): 109-114. http://d.wanfangdata.com.cn/Periodical/bp201203027 [7] 王永刚, 王礼立.平板撞击下C30混凝土中冲击波的传播特性[J].爆炸与冲击, 2010, 30(2): 119-124. doi: 10.11883/1001-1455(2010)02-0119-06Wang Yong-gang, Wang Li-li. Shock wave propagation characteristics in C30 concrete under plate impact loading[J]. Explosion and Shock Waves, 2010, 30(2): 119-124. doi: 10.11883/1001-1455(2010)02-0119-06 [8] 焦楚杰, 孙伟, 高培正.钢纤维高强混凝土抗爆炸研究[J].工程力学, 2008, 25(3): 158-166. http://www.cqvip.com/Main/Detail.aspx?id=26803722Jiao Chu-jie, Sun Wei, Gao Pei-zheng. Study on steel fiber reinforced high strength concrete subject to blast loading[J]. Engineering Mechanics, 2008, 25(3): 158-166. http://www.cqvip.com/Main/Detail.aspx?id=26803722 [9] Rosenberg Z, Yaziv D, Partom Y. Calibration of foil-like manganin gauges in planar shock wave experiments[J]. Journal of Applied Physics, 1980, 51(7): 3702-3705. doi: 10.1063/1.328155 [10] Kury J W. Metal acceleration by chemical explosives[C]//Proceedings of the 4th International Symposium on Detonation. Wahington DC, USA, 1965: 3-13. [11] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//MRS Proceedings. 1994, 418: 413-420. [12] 覃剑锋.含铝炸药在混凝中的爆炸作用研究[D].北京: 北京理工大学, 2012: 17-18. [13] 李澎.非理想炸药水下爆炸能量数出结构研究[D].北京: 北京理工大学, 2006: 25-26. [14] Cole R H. Underwater Explosion[M]. Princeton, USA: Princeton University Press, 1948: 86-90. 期刊类型引用(5)
1. 翟成,曲占庆,邓守春,孙伟福,罗宁,王宇,刘厅,郭天魁,吴飞鹏,刘静,宋正昶,陈尚斌,杨威,蔡承政. 页岩储层甲烷原位燃爆压裂理论与技术研究进展. 中国矿业大学学报. 2024(03): 435-455 . 百度学术
2. 余旭,石克龙,王宇,刘厅,唐伟. 燃爆载荷冲击下五峰—龙马溪组页岩断裂韧性及破坏模式. 煤炭学报. 2023(12): 4322-4335 . 百度学术
3. 孙林,邹信波,黄波,吴飞鹏,熊培祺. 爆燃压裂技术在筛管完井污染解堵中的应用. 中国海上油气. 2021(04): 143-148 . 百度学术
4. 易飞,孙林,高建崇,熊培祺,李旭光. 爆燃压裂火药参数正交综合平衡分析. 中国海上油气. 2020(02): 106-111+180 . 百度学术
5. 黄波,熊培祺,孙林. 海上砂岩油藏爆燃压裂数值模拟技术研究. 中国科技论文. 2018(11): 1319-1324 . 百度学术
其他类型引用(1)
-