Analysis of characteristics of sequential underwater explosion sound signal based on wavelet transform
-
摘要: 为了研究水下连续爆炸声信号的特征,利用Mallat算法,采用离散小波变换对水下连续爆炸声信号进行了分层提取分析,讨论了水下连续爆炸声信号在各频带的能量分布状况,采用Welch方法实现了对水下连续爆炸声信号的功率谱特征提取,并采用离散小波变换对声信号进行时频谱特性分析。结果表明,水下连续爆炸声信号具有很强的声功率,声压级可以达到190 dB以上,声持续时间较长,频率范围宽、声信号的能量主要集中在频率48 kHz以下,其中在低频段能量更大,这些特点使其有望成为水声干扰源。Abstract: To obtain the characteristics of sequential underwater explosion sound signals effectively, the sequential underwater explosion sound signals have been gradually extracted by the Mallat algorithm of wavelet transform. The energy distribution of the sequential underwater explosion sound signal at different frequency ranges was discussed by adopting the discrete wavelet transform. The Welch spectrum method had been used to extract the power spectrum characteristics of sequential underwater explosion sound signals. The time-frequency characteristic was analyzed by using the discrete wavelet transform. The results show that the sequential underwater explosion has characteristics of strong sound power, longer sound duration and wide frequency range, the sound pressure level can be more than 190 dB, the energy is mainly concentrated in area of 48 kHz, with the higher energy band in the low frequency band. These characteristics show that the sequential underwater explosion can be used as a source of sound interference. The results also show that wavelet transform can be used to study the characteristics of the sequential underwater explosion sound signals reasonably so as to analyze them accurately.
-
表 1 频带分布表
Table 1. Distribution of the frequency band
分量 f/kHz d1 96~192 d2 48~96 d3 24~48 d4 12~24 d5 6~12 d6 3~6 d7 1.5~3 d8 0.75~1.5 d9 0.375~0.75 a9 0~0.375 -
[1] 潘正伟, 焦善武, 顾晓辉.水下爆炸-高功率宽频带的水声干扰源[J].南京理工大学学报, 1999, 23(6): 507-509. http://www.cnki.com.cn/Article/CJFDTotal-NJLG199906006.htmPan Zheng-wei, Jiao Shan-wu, Gu Xiao-hui. Underwater explosion is an acoustic interference source with high power and wide band[J]. Journal of Nanjing University of Science and Technology, 1999, 23(6): 507-509. http://www.cnki.com.cn/Article/CJFDTotal-NJLG199906006.htm [2] 张贤达.现代信号处理[M].北京: 清华人学出版社, 1994. [3] 杜志鹏, 汪玉, 杨洋, 等.舰艇水下爆炸冲击信号拟合及应用[J].振动与冲击, 2010, 29(3): 182-184. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201003043.htmDu Zhi-peng, Wang Yu, Yang Yang, et al. Curve fit method for naval underwater explosion shock signal and its application[J]. Journal of Vibration and Shock, 2010, 29(3): 182-184. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201003043.htm [4] 贾虎, 沈兆武.纤维爆炸索水下爆炸声信号特征的小波分析[J].振动与冲击, 2011, 30(9): 243-247. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201109054.htmJia Hu, Shen Zhao-wu. Characteristics of underwater detonation acoustic signals of fiber-based detonating cord based on wavelet analysis and power spectrum[J]. Journal of Vibration and Shock, 2011, 30(9): 243-247. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201109054.htm [5] 李夕兵, 凌同华, 张义平.爆破震动信号分析理论与技术[M].北京: 科学出版社, 2009. [6] Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643. doi: 10.1109/18.119727 [7] 胡昌华, 李国华, 刘涛, 等.基于MATLAB6. X的系统分析与设计: 小波分析[M].西安: 西安电子科技大学出版, 2004. [8] Daubechies I. Orthonormal bases of compactly supported wavelet[J]. Communication Pure and Applied Mathematics, 1988, 41(7): 909-996. doi: 10.1002/cpa.3160410705 [9] 康春玉, 章新华, 张安清.一种基于谱估计的被动声呐目标识别方法[J].哈尔滨工程大学学报, 2003, 24(6): 627-631. http://www.cqvip.com/QK/92273A/20036/9023799.htmlKang Chun-yu, Zhang Xin-hua, Zhang An-qing. A distinguishing method of passive sonar target by means of spectrum estimation[J]. Journal of Harbin Engineering University, 2003, 24(6): 627-631. http://www.cqvip.com/QK/92273A/20036/9023799.html