Double sided explosive cladding of stainless steel and ordinary carbon steel
-
摘要: 为了解决现行爆炸复合装药方式落后及炸药爆炸的能量利用率极低的问题,使用了一种保证装药质量的蜂窝结构炸药,并将该蜂窝结构炸药应用于一次起爆可复合二块复合板的双面爆炸复合技术。进行了7 mm厚的蜂窝结构炸药用于3 mm厚的不锈钢板和16 mm厚的Q235钢板的双面爆炸复合实验;并计算得到了复板碰撞速度的上下限及2组实验中复板的碰撞速度。由于受到蜂窝材料和双面复板的多向约束,炸药的临界厚度显著降低,乳化炸药在5 mm厚度时仍可以稳定爆轰。研究结果表明:和现行的单面爆炸复合相比,在复合相同数量复合板的情况下,采用蜂窝结构炸药的双面爆炸复合技术中,炸药的使用量节省了77%,炸药的能量利用率得到显著提高;计算与实验结果一致性较好。Abstract: In order to resolve the current issue about the backward method of charge and low energy efficiency of explosives, a kind of explosive with the structure of honeycomb is used to ensure the quality of the charge and is applied in double sided explosive cladding in which two plates can be combined in one explosion. A double sided explosive caldding experiment of stainless steel plates with the thickness of 3 mm and Q235 steel plates with thickness of 16 mm is carried out by using the explosive with the thickness of 7 mm. The explosive cladding window of the collision velocity is calculated as well as the collision velocity in two groups of the tests. The critical thichness of the explosive is remarkbly reduced with the explosive astricted by the honeycomb structure and the plates. The emulsion explosive with the thickness of 5 mm detonates stably. The result shows that, compared to the existing explosive cladding method, the consumption of explosives by using this method is reduced by 77% in the case of cladding the same number of combination plates. The calculation prefigure explosive cladding of stainless steel/Q235 steel exactly.
-
表 1 爆炸复合材料的主要力学性能
Table 1. Main mechanical properties of bonded meterials
材料 ρ/(kg·m-3) σ/MPa c/(m·s-1) 材料 ρ/(kg·m-3) σ/MPa c/(m·s-1) 不锈钢 7 900 560 5 790 Q235钢 7 800 450 5 200 表 2 爆炸复合材料的主要力学性能
Table 2. Main mechanical properties of bonded meterials
实验 l1f/mm l2f/mm l3f/mm l1b/mm l2b/mm l3b/mm h/mm d/mm r 1 300 150 3 300 150 16 9 10 0.49 2 300 75 3 300 150 16 9 7 0.37 表 3 乳化基质的组分
Table 3. Component of the emulsion matrix
成分 w/% NH4NO3 75 NaNO3 10 C12H26 1 C24H44O6 2 C18H38 4 H2O 8 -
[1] 郑远谋.爆炸焊接和爆炸复合材料的原理及应用[M].长沙: 中南大学出版社, 2007: 18-20. [2] Wang X, Zheng Y Y, Liu H X, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method[J]. Materials and Design, 2012, 35: 210-219. doi: 10.1016/j.matdes.2011.09.047 [3] Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied Physics, 2013, 113(4): 044901. doi: 10.1063/1.4775788 [4] 孙宇新, 康宗维, 付艳恕, 等.多层金属板爆炸焊接研究[J].南京理工大学学报, 2009, 33(5): 596-599. http://d.wanfangdata.com.cn/Periodical/njlgdxxb200905009Sun Yu-xin, Kang Zong-wei, Fu Yan-shu, et al. Explosive welding of multilayer metal plates[J]. Journal of Nanjing University of Science and Technology, 2009, 33(5): 596-599. http://d.wanfangdata.com.cn/Periodical/njlgdxxb200905009 [5] 宋锦泉.乳化炸药爆轰特性研究[D].北京: 北京科技大学, 2000: 45-47. [6] Cooper P W. Explosives engineering[M]. New York: Wiley-VCH, 1997: 15-35. [7] Blazynski T Z. Explosive welding forming and compaction[M]. London: Application Science Publishers Ltd, 1983: 45-50. [8] Wylie H K, Williams P E G. Further experimental investigation of explosive welding parameters[C]//Proceedings of the 3rd International Conference of the Center for HEF. Denver, CO, USA: University of Denver, 1971: 1-43. [9] 邵丙璜, 张凯.爆炸焊接原理及其工程应用[M].大连: 大连理工大学出版社, 1987: 8-287. [10] Kennedy J E, Zukas J A, Walters W P. The Gurney model of explosive output for driving metal explosive effects and applications[M]. New York: Springer, 1998: 221-257. [11] 陆明, 吕春绪.乳化炸药配方设计的数学模型研究[J].爆炸与冲击, 2002, 22(4): 338-342. http://www.bzycj.cn/article/id/10173Lu M, Lu C X. The mathematical model for the formulation design of emulsion explosive[J]. Explosion and Shock Waves, 2002, 22(4): 338-342. http://www.bzycj.cn/article/id/10173 [12] 王耀华.金属板材爆炸焊接研究与实践[M].北京: 国防工业出版社, 2007: 31-38.