圆柱形爆轰波的二维数值模拟

武丹 刘岩 王健平

武丹, 刘岩, 王健平. 圆柱形爆轰波的二维数值模拟[J]. 爆炸与冲击, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
引用本文: 武丹, 刘岩, 王健平. 圆柱形爆轰波的二维数值模拟[J]. 爆炸与冲击, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
Wu Dan, Liu Yan, Wang Jian-ping. Two-dimensional simulation of cylindrical detonation[J]. Explosion And Shock Waves, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
Citation: Wu Dan, Liu Yan, Wang Jian-ping. Two-dimensional simulation of cylindrical detonation[J]. Explosion And Shock Waves, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06

圆柱形爆轰波的二维数值模拟

doi: 10.11883/1001-1455(2015)04-0561-06
详细信息
    作者简介:

    武丹(1987—), 女, 博士研究生, wudan65@126.com

  • 中图分类号: O383

Two-dimensional simulation of cylindrical detonation

  • 摘要: 基于带化学反应的二维Euler方程,对圆柱形爆轰波的直接起爆和传播过程进行了二维数值模拟研究,拟分析起爆条件和初始压强对圆柱形爆轰波形成和传播的影响。研究发现,圆柱形爆轰波起爆成功向外传播的过程中,新的三波结构的生成标志着爆轰波进入稳定传播阶段。在起爆能量足够的情况下,起爆半径(曲率)的大小决定着三波结构初始形成时的数目和传播半径,起爆压强对其基本不产生影响;起爆半径大(曲率小)时,三波结构初始形成时的传播半径大、数目多,圆柱形爆轰波进入稳定传播阶段的传播距离长;数值模拟中,初始压强的提高,有助于圆柱形爆轰在较短的传播距离内进入稳定传播阶段。
  • 图  1  圆柱形爆轰波物理模型和计算区域

    Figure  1.  Physical model and computational domain of cylindrical detonation wave

    图  2  3种网格下圆柱形爆轰波的胞格结构

    Figure  2.  Cellular pattern of cylindrical detonation using three different grid sizes

    图  3  二维圆柱形爆轰波流场结构

    Figure  3.  Flow field of two-dimensional cylindrical detonation

    图  4  圆柱形爆轰波的胞格结构

    Figure  4.  Cellular pattern of cylindrical detonation

    图  5  胞格结构

    Figure  5.  Cellular pattern

    图  6  起爆压强对三波结构初始形成时的影响

    Figure  6.  Influence of ignition pressure on the new-generated triple shock waves

    图  7  起爆半径对三波结构初始形成时的影响

    Figure  7.  Influence of ignition radius on the new-generated triple shock waves

    图  8  初始压强对三波结构初始形成的数目和稳定传播半径的影响

    Figure  8.  Influence of initial pressure on the number of new-generated triple shock waves and the stable running radius

  • [1] Lee J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28: 75-104. doi: 10.1146/annurev.pc.28.100177.000451
    [2] Zeldovich Y B, Kogarko S M, Simonov N N. Experimental investigation of spherical detonation in gases[J]. Soviet Physics-Technical Physics, 1957, 1(8): 1689-1731. http://ci.nii.ac.jp/naid/10007401387
    [3] Matsui H, Lee J H. Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations[J]. Combustion and Flame, 1976, 27: 217-220. http://www.sciencedirect.com/science/article/pii/0010218076900249
    [4] Vasilev A A. Geometric limits of gas detonation propagation[J]. Combustion, Explosion, and Shock Waves, 1982, 18(2): 245-249. doi: 10.1007/BF00789626
    [5] Aminallah M, Brossard J, Vasilev A. Cylindrical detonations in methane-oxygen-nitrogen mixtures[J]. The American Institute of Aeronautics and Astronautics, 1993, 153: 203-228. doi: 10.2514/5.9781600866265.0203.0228
    [6] Soloukhin R I. Shock waves and detonations in gases[M]. Moscow: Mono Book Corp, State Publishing House, 1966: 138-147.
    [7] Bull D C, Elsworth, J E, Hoooper G, et al. A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen[J]. Journal of Physics D: Applied Physics, 1976, 9(4): 191-199. http://adsabs.harvard.edu/abs/1976JPhD....9.1991B
    [8] Jiang Z L, Han G L, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations[J]. Combustion and Flame, 2009, 156(8): 1653-1661. http://www.sciencedirect.com/science/article/pii/s001021800900090x
    [9] Asahara M, Tsuboi N, Hayashi A K, et al. Two-dimensional simulation on propagation mechanism of H2/O2 cylindrical detonation with a detailed reaction model: Influence of initial energy and propagation mechanism[J]. Combustion Science and Technology, 2010, 182(11/12): 1884-1900. doi: 10.1080/00102202.2010.499721
    [10] Korobeinikov V P, Levin V A, Markov V V, et al. Propagation of blast wave in a combustion gas[J]. Astronautica Acta, 1972, 17: 529-537. http://www.researchgate.net/publication/279699512_Propagation_of_blast_waves_in_a_combustible_gas
    [11] Mohanraj R, Merkle C L. A numerical study of pulse detonation engine performance: AIAA 2000-0315[R]. 2000.
    [12] Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. http://www.sciencedirect.com/science/article/pii/S002199910096443X
    [13] Watt S D, Sharpe. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves[J]. Journal of Fluid Mechanics, 2005, 522: 329-356. http://www.ams.org/mathscinet-getitem?mr=2260972
    [14] 张博, Lee J H S, 白春华. C2H4-O2混合气体直接起爆的临界能量[J].爆炸与冲击, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08

    Zhang Bo, Lee J H S, Bai Chun-hua. Critial energy for direct initiation of C2H4-O2 mixture[J]. Explosion and Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08
  • 加载中
图(8)
计量
  • 文章访问数:  3018
  • HTML全文浏览量:  222
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2014-01-22
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回