Two-dimensional simulation of cylindrical detonation
-
摘要: 基于带化学反应的二维Euler方程,对圆柱形爆轰波的直接起爆和传播过程进行了二维数值模拟研究,拟分析起爆条件和初始压强对圆柱形爆轰波形成和传播的影响。研究发现,圆柱形爆轰波起爆成功向外传播的过程中,新的三波结构的生成标志着爆轰波进入稳定传播阶段。在起爆能量足够的情况下,起爆半径(曲率)的大小决定着三波结构初始形成时的数目和传播半径,起爆压强对其基本不产生影响;起爆半径大(曲率小)时,三波结构初始形成时的传播半径大、数目多,圆柱形爆轰波进入稳定传播阶段的传播距离长;数值模拟中,初始压强的提高,有助于圆柱形爆轰在较短的传播距离内进入稳定传播阶段。Abstract: Based on two-step reactive Euler equations, two-dimensional simulation of cylindrical detonation (CD) is performed. The objective is to study the influence of ignition conditions and initial pressure on the formation and propagation of CD. It is found that the new-generation of triple shock waves is the sign that CD becomes stable as it is running outwards. As long as CD could be ignited successfully, the ignition radius (curvature) decided the number and location of initial-generated triple shock waves, and the ignition pressure has little influence on them. When the ignition radius is large, the number and running radius of initial-generated triple shock waves is large as well, and long running distance is needed for CD to become stable. When the initial pressure is elevated, CD becomes stable in shorter running distance.
-
-
[1] Lee J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28: 75-104. doi: 10.1146/annurev.pc.28.100177.000451 [2] Zeldovich Y B, Kogarko S M, Simonov N N. Experimental investigation of spherical detonation in gases[J]. Soviet Physics-Technical Physics, 1957, 1(8): 1689-1731. http://ci.nii.ac.jp/naid/10007401387 [3] Matsui H, Lee J H. Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations[J]. Combustion and Flame, 1976, 27: 217-220. http://www.sciencedirect.com/science/article/pii/0010218076900249 [4] Vasilev A A. Geometric limits of gas detonation propagation[J]. Combustion, Explosion, and Shock Waves, 1982, 18(2): 245-249. doi: 10.1007/BF00789626 [5] Aminallah M, Brossard J, Vasilev A. Cylindrical detonations in methane-oxygen-nitrogen mixtures[J]. The American Institute of Aeronautics and Astronautics, 1993, 153: 203-228. doi: 10.2514/5.9781600866265.0203.0228 [6] Soloukhin R I. Shock waves and detonations in gases[M]. Moscow: Mono Book Corp, State Publishing House, 1966: 138-147. [7] Bull D C, Elsworth, J E, Hoooper G, et al. A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen[J]. Journal of Physics D: Applied Physics, 1976, 9(4): 191-199. http://adsabs.harvard.edu/abs/1976JPhD....9.1991B [8] Jiang Z L, Han G L, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations[J]. Combustion and Flame, 2009, 156(8): 1653-1661. http://www.sciencedirect.com/science/article/pii/s001021800900090x [9] Asahara M, Tsuboi N, Hayashi A K, et al. Two-dimensional simulation on propagation mechanism of H2/O2 cylindrical detonation with a detailed reaction model: Influence of initial energy and propagation mechanism[J]. Combustion Science and Technology, 2010, 182(11/12): 1884-1900. doi: 10.1080/00102202.2010.499721 [10] Korobeinikov V P, Levin V A, Markov V V, et al. Propagation of blast wave in a combustion gas[J]. Astronautica Acta, 1972, 17: 529-537. http://www.researchgate.net/publication/279699512_Propagation_of_blast_waves_in_a_combustible_gas [11] Mohanraj R, Merkle C L. A numerical study of pulse detonation engine performance: AIAA 2000-0315[R]. 2000. [12] Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. http://www.sciencedirect.com/science/article/pii/S002199910096443X [13] Watt S D, Sharpe. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves[J]. Journal of Fluid Mechanics, 2005, 522: 329-356. http://www.ams.org/mathscinet-getitem?mr=2260972 [14] 张博, Lee J H S, 白春华. C2H4-O2混合气体直接起爆的临界能量[J].爆炸与冲击, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08Zhang Bo, Lee J H S, Bai Chun-hua. Critial energy for direct initiation of C2H4-O2 mixture[J]. Explosion and Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08 -
推荐阅读
基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制
徐鸿飞 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
柱形装药空中爆炸冲击波荷载研究
王明涛 等, 爆炸与冲击, 2024
矩形管下气相螺旋爆轰的结构及传播方式
贾旭飞 等, 爆炸与冲击, 2024
环形通道内爆轰波的起爆机制
贺顺江 等, 高压物理学报, 2023
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
圆柱形障碍物对2h2+o2+nar预混气体的再起爆实验研究
刘虎 等, 高压物理学报, 2023
Phosphorescent carbon dots: intermolecular interactions, properties, and applications
Li, Jie et al., COORDINATION CHEMISTRY REVIEWS, 2024
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024