• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

圆柱形爆轰波的二维数值模拟

武丹 刘岩 王健平

武丹, 刘岩, 王健平. 圆柱形爆轰波的二维数值模拟[J]. 爆炸与冲击, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
引用本文: 武丹, 刘岩, 王健平. 圆柱形爆轰波的二维数值模拟[J]. 爆炸与冲击, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
Wu Dan, Liu Yan, Wang Jian-ping. Two-dimensional simulation of cylindrical detonation[J]. Explosion And Shock Waves, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06
Citation: Wu Dan, Liu Yan, Wang Jian-ping. Two-dimensional simulation of cylindrical detonation[J]. Explosion And Shock Waves, 2015, 35(4): 561-566. doi: 10.11883/1001-1455(2015)04-0561-06

圆柱形爆轰波的二维数值模拟

doi: 10.11883/1001-1455(2015)04-0561-06
详细信息
    作者简介:

    武丹(1987—), 女, 博士研究生, wudan65@126.com

  • 中图分类号: O383

Two-dimensional simulation of cylindrical detonation

  • 摘要: 基于带化学反应的二维Euler方程,对圆柱形爆轰波的直接起爆和传播过程进行了二维数值模拟研究,拟分析起爆条件和初始压强对圆柱形爆轰波形成和传播的影响。研究发现,圆柱形爆轰波起爆成功向外传播的过程中,新的三波结构的生成标志着爆轰波进入稳定传播阶段。在起爆能量足够的情况下,起爆半径(曲率)的大小决定着三波结构初始形成时的数目和传播半径,起爆压强对其基本不产生影响;起爆半径大(曲率小)时,三波结构初始形成时的传播半径大、数目多,圆柱形爆轰波进入稳定传播阶段的传播距离长;数值模拟中,初始压强的提高,有助于圆柱形爆轰在较短的传播距离内进入稳定传播阶段。
  • 图  1  圆柱形爆轰波物理模型和计算区域

    Figure  1.  Physical model and computational domain of cylindrical detonation wave

    图  2  3种网格下圆柱形爆轰波的胞格结构

    Figure  2.  Cellular pattern of cylindrical detonation using three different grid sizes

    图  3  二维圆柱形爆轰波流场结构

    Figure  3.  Flow field of two-dimensional cylindrical detonation

    图  4  圆柱形爆轰波的胞格结构

    Figure  4.  Cellular pattern of cylindrical detonation

    图  5  胞格结构

    Figure  5.  Cellular pattern

    图  6  起爆压强对三波结构初始形成时的影响

    Figure  6.  Influence of ignition pressure on the new-generated triple shock waves

    图  7  起爆半径对三波结构初始形成时的影响

    Figure  7.  Influence of ignition radius on the new-generated triple shock waves

    图  8  初始压强对三波结构初始形成的数目和稳定传播半径的影响

    Figure  8.  Influence of initial pressure on the number of new-generated triple shock waves and the stable running radius

  • [1] Lee J H S. Initiation of gaseous detonation[J]. Annual Review of Physical Chemistry, 1977, 28: 75-104. doi: 10.1146/annurev.pc.28.100177.000451
    [2] Zeldovich Y B, Kogarko S M, Simonov N N. Experimental investigation of spherical detonation in gases[J]. Soviet Physics-Technical Physics, 1957, 1(8): 1689-1731. http://ci.nii.ac.jp/naid/10007401387
    [3] Matsui H, Lee J H. Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations[J]. Combustion and Flame, 1976, 27: 217-220. http://www.sciencedirect.com/science/article/pii/0010218076900249
    [4] Vasilev A A. Geometric limits of gas detonation propagation[J]. Combustion, Explosion, and Shock Waves, 1982, 18(2): 245-249. doi: 10.1007/BF00789626
    [5] Aminallah M, Brossard J, Vasilev A. Cylindrical detonations in methane-oxygen-nitrogen mixtures[J]. The American Institute of Aeronautics and Astronautics, 1993, 153: 203-228. doi: 10.2514/5.9781600866265.0203.0228
    [6] Soloukhin R I. Shock waves and detonations in gases[M]. Moscow: Mono Book Corp, State Publishing House, 1966: 138-147.
    [7] Bull D C, Elsworth, J E, Hoooper G, et al. A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen[J]. Journal of Physics D: Applied Physics, 1976, 9(4): 191-199. http://adsabs.harvard.edu/abs/1976JPhD....9.1991B
    [8] Jiang Z L, Han G L, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations[J]. Combustion and Flame, 2009, 156(8): 1653-1661. http://www.sciencedirect.com/science/article/pii/s001021800900090x
    [9] Asahara M, Tsuboi N, Hayashi A K, et al. Two-dimensional simulation on propagation mechanism of H2/O2 cylindrical detonation with a detailed reaction model: Influence of initial energy and propagation mechanism[J]. Combustion Science and Technology, 2010, 182(11/12): 1884-1900. doi: 10.1080/00102202.2010.499721
    [10] Korobeinikov V P, Levin V A, Markov V V, et al. Propagation of blast wave in a combustion gas[J]. Astronautica Acta, 1972, 17: 529-537. http://www.researchgate.net/publication/279699512_Propagation_of_blast_waves_in_a_combustible_gas
    [11] Mohanraj R, Merkle C L. A numerical study of pulse detonation engine performance: AIAA 2000-0315[R]. 2000.
    [12] Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. http://www.sciencedirect.com/science/article/pii/S002199910096443X
    [13] Watt S D, Sharpe. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves[J]. Journal of Fluid Mechanics, 2005, 522: 329-356. http://www.ams.org/mathscinet-getitem?mr=2260972
    [14] 张博, Lee J H S, 白春华. C2H4-O2混合气体直接起爆的临界能量[J].爆炸与冲击, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08

    Zhang Bo, Lee J H S, Bai Chun-hua. Critial energy for direct initiation of C2H4-O2 mixture[J]. Explosion and Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08
  • 加载中
推荐阅读
基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制
徐鸿飞 等, 爆炸与冲击, 2025
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
柱形装药空中爆炸冲击波荷载研究
王明涛 等, 爆炸与冲击, 2024
矩形管下气相螺旋爆轰的结构及传播方式
贾旭飞 等, 爆炸与冲击, 2024
环形通道内爆轰波的起爆机制
贺顺江 等, 高压物理学报, 2023
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
圆柱形障碍物对2h2+o2+nar预混气体的再起爆实验研究
刘虎 等, 高压物理学报, 2023
Phosphorescent carbon dots: intermolecular interactions, properties, and applications
Li, Jie et al., COORDINATION CHEMISTRY REVIEWS, 2024
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Powered by
图(8)
计量
  • 文章访问数:  3092
  • HTML全文浏览量:  246
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2014-01-22
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回