Deformation and stress nonuniformity of aluminum foam under different impact speeds
-
摘要: 利用常规Hopkinson杆实验装置和改进的Hopkinson杆实验装置对泡沫铝试件进行冲击压缩实验,同时用高速摄影装置对实验过程进行全程跟踪拍摄。通过改变冲击速度,观测到了3种不同的变形模式。将得到的高速摄影图像用数字图像相关方法进行分析,讨论了3种模式下全场应变不同的发展过程,并依此讨论应力的不均匀性,为研究不同冲击速度下变形不均匀对泡沫铝动态力学行为的影响提供了新的方法。Abstract: A split Hopkinson pressure bar apparatus (SHPB) and a modified SHPB apparatus were employed to investigate the dynamic responses of aluminum foam. During the experiments, a high-speed camera was used to record the deformation process of specimens. Three deformation patterns were observed with the increase of the impact speed. All photographs recorded were analyzed by the digital imaging correlation method. The analytical results were used to illustrate the strain field progressing and the stress nonuniformity of these three deformation patterns. And they are helpful in the revealing of the intrinsic mechanisms of these three deformation patterns. This method offers a new and reliable method to study the influence of deformation nonuniformity on dynamic mechanical behaviors of aluminum foam under different impact speeds.
-
表 1 实验参数
Table 1. Experimental parameters
模式 v/(m·s-1) ρ/(g·cm-3) 实验方法 图像分辨率 拍摄速率/s-1 准静态模式 12 0.325 常规SHPB 256 Pixel×200 Pixel 74 000 过渡模式 50 0.340 直接撞击 304 Pixel×168 Pixel 74 000 冲击模式 110 0.338 直接撞击 288 Pixel×232 Pixel 74 000 -
[1] Lee S, Barthelat F, Moldovan N, et al. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials[J]. International Journal of Solids and Structures, 2006, 43(1): 53-73. http://www.sciencedirect.com/science/article/pii/S0020768305004269 [2] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams: Part Ⅰ: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. http://www.ingentaconnect.com/content/el/00225096/2005/00000053/00000010/art00002 [3] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams: Part Ⅱ: 'Shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. https://www.sciencedirect.com/science/article/pii/S0022509605000955 [4] Zheng Zhi-jun, Yu Ji-lin, Li Jian-rong. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664. http://www.sciencedirect.com/science/article/pii/S0734743X05000795 [5] 刘耀东, 虞吉林, 郑志军.惯性对多孔金属材料动态力学行为的影响[J].高压物理学报, 2008, 22(2): 118-124. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200802001.htmLiu Yao-dong, Yu Ji-lin, Zheng Zhi-jun. Effect of inertia on the dynamic behavior of cellular metal[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 118-124. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200802001.htm [6] 王鹏飞, 徐松林, 郑航, 等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014Wang Peng-fei, Xu Song-lin, Zheng Hang, et al. Influence of deformation modes on SHPB experimental results of cellular metal[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014 [7] Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1): 165-176. http://www.sciencedirect.com/science/article/pii/S0734743X07001856 [8] Pal S, Maiti S, Subhash G. Effect of microscopic deformation mechanisms on the dynamic response of soft cellular materials[J]. Mechanics of Materials, 2010, 42(2): 118-133. http://www.sciencedirect.com/science/article/pii/S0167663609002026 [9] Liao Shen-fei, Zheng Zhi-jun, Yu Ji-lin. Dynamic crushing of 2D cellular structures: Local strain field and shock wave velocity[J]. International Journal of Impact Engineering, 2013, 57: 7-16. http://www.sciencedirect.com/science/article/pii/S0734743X13000158 [10] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg27/ref27&dbid=16&doi=10.1139%2Fcgj-2014-0080&key=10.1117%2F12.7972925 [11] Bastawros A F, Bart-Smith H, Evans A G. Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 301-322. https://www.sciencedirect.com/science/article/pii/S0022509699000356 [12] Wang Y, Cuitio A M. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[J]. International Journal of Solids and Structures, 2002, 39(13): 3777-3796. https://www.sciencedirect.com/science/article/pii/S0020768302001762 [13] Wang Li-li, Ding Yuan-yuan, Yang Li-ming. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements[J]. International Journal of Impact Engineering, 2013, 62: 48-59. https://www.sciencedirect.com/science/article/pii/S0734743X13001164 [14] Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading: Part Ⅰ: Experiments[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652-2671. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220080501702506 [15] Luo H, Bhat A, Demetriou M D, et al. Dynamic compressive behavior of bulk metallic glass foam[C]//High Speed Full-field Optical Measurements in SEM Annual Conference & Exposition on Experimental and Applied Mechanics. 2009: 392. [16] 章超, 徐松林, 王鹏飞.基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试[J].实验力学, 2013, 28(5): 629-634. http://www.cnki.com.cn/Article/CJFDTotal-SYLX201305012.htmZhang Chao, Xu Song-lin, Wang Peng-fei. Test of aluminum foam deforming process under impact load based on digital image correlation method[J]. Chinese Journal of Experimental Mechanics, 2013, 28(5): 629-634. http://www.cnki.com.cn/Article/CJFDTotal-SYLX201305012.htm