狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流

张桂夫 朱雨建 李元超 杨基明

张桂夫, 朱雨建, 李元超, 杨基明. 狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流[J]. 爆炸与冲击, 2015, 35(5): 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
引用本文: 张桂夫, 朱雨建, 李元超, 杨基明. 狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流[J]. 爆炸与冲击, 2015, 35(5): 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
Zhang Gui-fu, Zhu Yu-jian, Li Yuan-chao, Yang Ji-ming. Bubble and jet induced by underwater wire explosion in a narrow tube[J]. Explosion And Shock Waves, 2015, 35(5): 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
Citation: Zhang Gui-fu, Zhu Yu-jian, Li Yuan-chao, Yang Ji-ming. Bubble and jet induced by underwater wire explosion in a narrow tube[J]. Explosion And Shock Waves, 2015, 35(5): 609-616. doi: 10.11883/1001-1455(2015)05-0609-08

狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流

doi: 10.11883/1001-1455(2015)05-0609-08
基金项目: 国家自然科学基金项目(11102204)
详细信息
    作者简介:

    张桂夫(1990—), 男, 博士研究生

    通讯作者:

    朱雨建, yujianrd@ustc.edu.cn

  • 中图分类号: O381

Bubble and jet induced by underwater wire explosion in a narrow tube

  • 摘要: 以高速摄影为主要手段,揭示直管中爆炸诱导气泡和射流的典型演变过程,并测试爆炸深度和爆炸能量对该现象的影响。研究发现直管中爆炸诱导的表面射流分为光滑和粗糙的两段,这区别于自由表面射流的形态;爆炸气泡的发展经历一个先膨胀再坍缩的过程,其中封闭坍缩以气泡顶部形成内向射流为特征。表面射流速度主要来自爆炸早期短时间内气泡膨胀赋予水体的冲量,且整体上与起爆能量成正相关,而与爆炸深度成反相关;用准一维的简化模型能够很好地描述它们之间的依赖关系,计算结果不仅在趋势上与实验结果一致,数值上也能很好吻合。
  • 图  1  实验装置

    Figure  1.  Experimental setup

    图  2  Uc=300 V,h=15 mm,直管中气泡及界面射流发展高速摄影图像

    Figure  2.  Sequential images of the interfacial flow in a straight tube with Uc=300 V and h=15 mm

    图  3  斜压效应诱导射流示意图

    Figure  3.  Schematic of jet formation by baroclinic effect

    4(a)  Uc=300 V,h=5 mm, 直管中气泡及界面射流发展高速摄影图像

    4(a).  Sequential images of the interfacial flow in a straight tube with Uc=300 V and h=5 mm

    4(b)  Uc=300 V, h=25 mm时, 直管中气泡及界面射流发展高速摄影图像

    4(b).  Sequential images of the interfacial flow in a straight tube with Uc=300 V and h=25 mm

    图  5  气泡最大长度和表面射流速度随爆炸深度的变化

    Figure  5.  Maximum bubble length and surface jet velocity varied with explosion depth

    图  6  直管中不同深度爆炸波与自由界面作用示意图

    Figure  6.  Schematic of interaction patterns of a free surface and an explosion at varied depths in a straight tube

    图  7  h=20 mm, Uc=150, 350 V时,直管中气泡及界面射流发展高速摄影图像

    Figure  7.  Sequential images of the interfacial flow in a straight tube with h=20 mm and Uc=150, 350 V

    图  8  气泡最大长度和表面射流速度随充电电压(能量)的变化

    Figure  8.  Maximum bubble length and surface jet velocity varied with charging voltage (energy)

    图  9  理论模型设置示意图

    Figure  9.  Schematic of theoretical model

    图  10  理论计算得到的气泡长度随时间的变化

    Figure  10.  Evolution history of bubble length by theoretical calculation

    表  1  气柱初始条件设置

    Table  1.   Initial conditions for gas column

    初始条件L0/mmpb0/MPa
    10.001367.00
    20.01038.20
    30.1004.23
    下载: 导出CSV
  • [1] Hirano T, Komatsu M, Takahashi A, et al. Enhancement of fibrinolytics with a laser-induced liquid jet[J]. Lasers in Surgery and Medicine, 2001, 29(4): 360-368. doi: 10.1002/lsm.1129
    [2] Nakagawa A, Hirano T, Komatsu M, et al. Holmium: YAG laser-induced liquid jet knife: Possible novel method for dissection[J]. Lasers in Surgery and Medicine, 2002, 31(2): 129-135. doi: 10.1002/lsm.10055
    [3] Blake J R, Taib B B, Doherty G. Transient cavities near boundaries: Part 1: Rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170: 479-497. doi: 10.1017/S0022112086000988
    [4] Blake J R, Taib B B, Doherty G. Transient cavities near boundaries: Part 2: Free surface[J]. Journal of Fluid Mechanics, 1987, 181: 197-212. doi: 10.1017/S0022112087002052
    [5] Blake J R, Gibson D C. Cavitation bubbles near boundaries[J]. Annual Review of Fluid Mechanics, 1987, 19: 99-123. doi: 10.1146/annurev.fl.19.010187.000531
    [6] Klaseboer E, Hung K C, Wang C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537: 387-413. doi: 10.1017/S0022112005005306
    [7] Klaseboer E, Khoo B C. An oscillating bubble near an elastic material[J]. Journal of Applied Physics, 2004, 96(10): 5808. doi: 10.1063/1.1803925
    [8] Klaseboer E, Turangan C K, Khoo B C. Dynamic behavior of a bubble near an elastic infinite interface[J]. International Journal of Multiphase Flow, 2006, 32(9): 1110-1122. doi: 10.1016/j.ijmultiphaseflow.2006.05.005
    [9] Ong G P, Khoo B C, Turangan C, et al. Behavior of oscillating bubbles near elastic membranes: An experimental and numerical study[J]. Modern Physics Letters: B, 2005, 19(28/29): 1579-1582. doi: 10.1142/S021798490500995X
    [10] Turangan C K, Ong G P, Klaseboeret E, et al. Experimental and numerical study of transient bubble-elastic membrane interaction[J]. Journal of Applied Physics, 2006, 100(5): 054910. doi: 10.1063/1.2338125
    [11] Miao H, Gracewski S M. Coupled FEM and BEM code for simulating acoustically excited bubbles near deformable structures[J]. Computational Mechanics, 2008, 42(1): 95-106. doi: 10.1007/s00466-007-0238-y
    [12] Xie W F, Young Y L, Liu T G, et al. Multiphase modeling of dynamic fluid-structure interaction during close-in explosion[J]. International Journal for Numerical Methods in Engineering, 2008, 74(6): 1019-1043. doi: 10.1002/nme.2207
    [13] Dadvand A, Khoo B C, Shervani-Tabar M T. A collapsing bubble induced micro injector: An experimental study[J]. Experiments in Fluids, 2009, 46(3): 419-434. doi: 10.1007/s00348-008-0568-3
    [14] 逄春京.水下爆炸气泡动过程的数值模拟研究[D].长沙: 国防科技大学, 2008: 28-59.
    [15] Zhang A M, Cui P, Wang Y. Experiments on bubble dynamics between a free surface and a rigid wall[J]. Experiments in Fluids, 2013, 54: 1602. doi: 10.1007/s00348-013-1602-7
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2913
  • HTML全文浏览量:  399
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-19
  • 修回日期:  2015-01-20
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回