弹体侵彻干砂的数值模型

李杰 李猛深 李宏 施存程

李杰, 李猛深, 李宏, 施存程. 弹体侵彻干砂的数值模型[J]. 爆炸与冲击, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08
引用本文: 李杰, 李猛深, 李宏, 施存程. 弹体侵彻干砂的数值模型[J]. 爆炸与冲击, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08
Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08
Citation: Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08

弹体侵彻干砂的数值模型

doi: 10.11883/1001-1455(2015)05-0633-08
基金项目: 中国博士后科学基金项目(2013M541675,2014M552688);爆炸冲击防灾减灾国家重点实验室开放基金项目(DPMEIKF201301)
详细信息
    作者简介:

    李杰(1981—), 男, 博士, 讲师

    通讯作者:

    李猛深, lms200508@163.com

  • 中图分类号: O385

Numerical modeling of projectile penetration into dry sand

  • 摘要: 基于砂粒的不可压缩性假设,利用球形空腔动态收缩模型和广义Mises强度准则推导了干砂的孔隙压密演化方程;根据Hugoniot冲击突跃条件和Grüneisen系数,推导了干砂考虑孔隙演化影响的状态方程;根据关联流动法则,得到了大变形时砂的弹塑性应力应变关系;基于动力有限元计算平台,采用上述模型分析了弹体高速侵彻干砂的作用过程。结果表明,该模型能够表征高速侵彻时砂的孔隙演化对应力应变状态的反向影响,能够较准确地反映高速侵彻作用下干砂的动力响应过程。
  • 图  1  砂的孔隙演化等效模型

    Figure  1.  An equivalent model of pore evolution for sand

    图  2  加卸载时砂的孔隙演化曲线

    Figure  2.  Pore evolution curves for sand under loading and unloading conditions

    图  3  弹体尺寸

    Figure  3.  Projectile dimensions

    图  4  弹靶的有限元模型片段

    Figure  4.  Parts of the finite element models for the projectile and target

    图  5  一质量80.3 g的弹体侵彻速度与侵彻深度的关系

    Figure  5.  Velocity varied with penetration depth for a projectile with the mass of 80.30 g

    图  6  靶体在不同时刻的压力场

    Figure  6.  The pressure fields of the target at different times

    表  1  砂的侵彻深度计算值与实验结果

    Table  1.   Test and computed results for penetration depths of sand

    m/gvp, 0/(m·s-1)He/mHc/m$\frac{{\left| {{H_{\text{c}}} - {H_{\text{e}}}} \right|}}{{{H_{\text{s}}}}}$/%
    80.306741.371.0424.1
    81.207161.281.377.0
    80.966731.331.0421.8
    81.056491.260.9623.8
    80.866401.270.9326.7
    81.116451.260.9524.6
    81.156411.280.9327.3
    81.006641.241.0118.5
    81.256921.361.248.8
    80.756821.291.1510.8
    80.426611.301.0023.1
    80.306781.371.1019.7
    81.106661.471.0131.3
    下载: 导出CSV
  • [1] Allen W A, Mayfield E B, Morrison H L. Dynamics of a projectile penetration sand[J]. Journal of Applied Physics, 1957, 28(3): 370-376. doi: 10.1063/1.1722750
    [2] Allen W A, Mayfield E B, Morrison H L. Dynamics of a projectile penetration sand: Part Ⅱ[J]. Journal of Applied Physics, 1957, 28(11): 1331-1335. doi: 10.1063/1.1722645
    [3] Mesri G, Feng T W, Benak J M. Post densification penetration resistance of clean sands[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1095-1115. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg15/ref15&dbid=16&doi=10.1139%2ft11-098&key=10.1061%2f(asce)0733-9410(1990)116%3a7(1095)
    [4] Goldman D I, Umbanhowar P. Scaling and dynamics of sphere and disk impact into granular media[J]. Physical Review E, 2008, 77(2): 021308. doi: 10.1103/PhysRevE.77.021308
    [5] Collins A L, Addiss J W, Walley S M, et al. The effect of nose shape on the internal flow fields during ballistic penetration of sand[J]. International Journal of Impact Engineering, 2011, 38(12): 951-963. doi: 10.1016/j.ijimpeng.2011.08.002
    [6] Borg J P, Morrissey M P, Perich C A, et al. In situ velocity and stress characterization of a projectile penetrating a sand target: Experimental measurements and continuum simulations[J]. International Journal of Impact Engineering, 2013, 51(1): 23-35. http://www.sciencedirect.com/science/article/pii/S0734743X12001510
    [7] Forrestal M J, Norwood F R, Longcope D B. Penetration into targets described by locked hydrostats and shear strength[J]. International Journal of Solids and Structures, 1981, 17(9): 915-924. doi: 10.1016/0020-7683(81)90106-2
    [8] Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3): 427-444. doi: 10.1016/0734-743X(92)90167-R
    [9] Boguslavskii Y, Drabkin S, Juran I, et al. Theory and practice of projectile's penetration in soils[J]. Journal of Geotechnical Engineering, 1996, 122(10): 806-812. doi: 10.1061/(ASCE)0733-9410(1996)122:10(806)
    [10] Salgado R, Mitchell J K, Jamiolkowski M. Cavity expansion and penetration resistance in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 344-354. doi: 10.1061/(ASCE)1090-0241(1997)123:4(344)
    [11] Savvateev A F, Budin A V, Kolikov V A, et al. High-speed penetration into sand[J]. International Journal of Impact Engineering, 2001, 26(1/2/3/4/5/6/7/8/9/10): 675-681. http://www.sciencedirect.com/science/article/pii/S0734743X01001324
    [12] Kotov V L, Balandin V V, Bragov A M, et al. Using a local interaction model to determine the resistance to penetration of projectiles into sandy soil[J]. Journal of Applied Mechanics and Technical Physics, 2013, 54(4): 612-621. doi: 10.1134/S0021894413040123
    [13] Onate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27/28/29): 3087-3128. http://www.sciencedirect.com/science/article/pii/S0045782504001215
    [14] Tong X, Tuan C Y. Viscoplastic cap model for soils under high strain rate loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 206-214. doi: 10.1061/(ASCE)1090-0241(2007)133:2(206)
    [15] Dwivedi S K, Teeter R D, Felice C W, et al. Two dimensional mesoscale simulations of projectile instability during penetration in dry sand[J]. Journal of Applied Physics, 2008, 104(8): 083502. doi: 10.1063/1.2999391
    [16] Kharab A, Hudspeth R T, Guenther R B. Penetration of cylindrical projectiles into saturated sandy media[J]. Experimental Mechanics, 2009, 49(5): 605-612. doi: 10.1007/s11340-008-9190-9
    [17] Carroll M M, Holt A C. Static and dynamic porecolapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1636. doi: 10.1063/1.1661372
    [18] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4): 2812-2825. doi: 10.1063/1.329011
    [19] Leppanen J. Dynamic behaviour of concrete structures subjected to blast and fragment impacts[D]. Sweden: Chalmers University of Technology, 2002: .
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2778
  • HTML全文浏览量:  323
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-04
  • 修回日期:  2014-07-23
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回