Integral expression and affecting factors for the additional impact load of an adaptive base
-
摘要: 为研究附加冲击载荷的解析方法和影响因子,推导了附加冲击载荷的积分表达式,获得了影响附加冲击载荷的3个主要参数;建立底座的数值模型,并通过实验验证了数值模型建立方法的正确性。在数值模型基础上,结合MISO(multiple-input, single-output)多元广义多项式神经网络方法,建立了底座力学特性数学模型,对附加冲击载荷的影响因子进行智能决策分析。分析结果表明:对于附加冲击载荷的影响因子由高到低排序为帘线模量、截面面积、帘线间距,且当相应参数的变化导致附加冲击载荷增大时,该参数对附加冲击载荷的影响因子逐渐减小。Abstract: To research the analytical method and affecting factors of the additional impact load, an integral expression formula was derived for the additional impact load. Three major parameters affecting the additional impact load were obtained. A numerical model was built for the adaptive base. And the correctness of this modeling method was verified by the test. Based on the built numerical model, a mathematic model was developed by combining the MISO (multiple-input, single-output) multivariate generalized polynomials neural network to describe the mechanical properties of the adaptive base. Thereby, the intelligent decision analysis was conducted for the affecting factors of the additional impact load. The analysis results show that the affecting factors for the additional impact load from high to low levels are cord modulus, section area and cord spacing. If the change of one parameter would cause the additional load to increase, the affecting factor by the corresponding parameter on the additional impact load decreases.
-
Key words:
- mechanics of explosion /
- affecting factor /
- numerical model /
- adaptive base /
- additional impact load
-
表 1 附加冲击载荷峰值计算结果
Table 1. The calculation results of the peak additional impact load
γ/% (F/(pS))E (F/(pS))A (F/(pS))d -50 -0.221 8 -0.226 7 -0.284 2 -45 -0.230 2 -0.235 0 -0.283 7 -40 -0.237 2 -0.241 8 -0.282 6 -35 -0.245 5 -0.248 6 -0.282 1 -30 -0.250 4 -0.255 0 -0.281 0 -25 -0.257 6 -0.260 1 -0.280 2 -20 -0.262 5 -0.264 4 -0.279 1 -15 -0.266 5 -0.267 9 -0.278 3 -10 -0.269 7 -0.271 1 -0.277 8 -5 -0.272 7 -0.274 0 -0.277 0 0 -0.276 5 -0.276 5 -0.276 5 5 -0.276 9 -0.276 7 -0.274 7 10 -0.277 9 -0.278 1 -0.273 0 15 -0.279 0 -0.2789 -0.271 1 20 -0.280 1 -0.279 7 -0.268 8 25 -0.280 8 -0.280 2 -0.266 1 30 -0.281 5 -0.280 5 -0.264 0 35 -0.281 9 -0.281 0 -0.261 2 40 -0.283 0 -0.281 6 -0.258 7 45 -0.283 3 -0.281 8 -0.253 9 50 -0.284 4 -0.282 1 -0.247 7 -
[1] Spearman M L. Innovation in aerodynamic design features of Soviet missiles[R]. NASA 20080014230, 2008. [2] 杨风波, 马大为, 杨帆.高压弹射装置内弹道建模与计算[J].兵工学报, 2013, 34(5): 527-534. http://qikan.cqvip.com/Qikan/Article/Detail?id=45911456Yang Feng-bo, Ma Da-wei, Yang Fan. Interior ballistics modeling and calculation of high-pressure ejection device[J]. Acta Armamentarii, 2013, 34(5): 527-534. http://qikan.cqvip.com/Qikan/Article/Detail?id=45911456 [3] 毕世华, 王汉平.导弹垂直弹射过程中制动锥度动力学特性研究[J].北京理工大学学报, 2004, 24(9): 762-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb200409003Bi Shi-hua, Wang Han-ping. A study on the dynamical characteristics of the braking cylindrical shells during the vertical ejection of missiles[J]. Transaction of Beijing Institute of Technology, 2004, 24(9): 762-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb200409003 [4] 张仁军, 鲍福延.两种不同注水方式的燃气蒸汽式发射系统内弹道性能比较[J].固体火箭技术, 2005, 28(1): 5-9. http://www.cnki.com.cn/Article/CJFDTotal-GTHJ200501001.htmZhang Ren-jun, Bao Fu-yan. Comparison of internal ballistic properties between gas and steam launching system in two different modes of water injection[J]. Journal of Solid Rocket Technology, 2005, 28(1): 5-9. http://www.cnki.com.cn/Article/CJFDTotal-GTHJ200501001.htm [5] 刘琥, 倪晓琛, 白静.自适应底座悬垂弹射过程附加冲击载荷分析[J].导弹与航天运载技术, 2012(3): 23-25. http://d.wanfangdata.com.cn/Periodical/ddyhtyzjs201203006Liu Hu, Ni Xiao-chen, Bai Jing. Additional impact load study during the drape launch of adapting base[J]. Missiles and Space Vehicles, 2012(3): 23-25. http://d.wanfangdata.com.cn/Periodical/ddyhtyzjs201203006 [6] 沈观林.复合材料力学[M].北京: 清华大学出版社, 2007: 127-128. [7] Ren Jie, Zhong Jian-lin, Ma Da-wei. A method of cord-rubber composite materials based on cord tensile modulus correction[C]//2013 International Forum on Special Equipments and Engineering Mechanics. 2013: 248-252. [8] Erdogan H, Gulal E. Identification of dynamic systems using Multiple Input-Single Output(MISO)models[J]. Nonlinear Analysis: Real World Applications, 2009, 10(2): 1183-1196. http://www.sciencedirect.com/science/article/pii/S1468121808000047 [9] 段宝福, 张猛, 李俊猛, 等.逐孔起爆震动参数预报的BP神经网络模型[J].爆炸与冲击, 2010, 30(4): 401-406. doi: 10.11883/1001-1455(2010)04-0401-06Duan Bao-fu, Zhang Meng, Li Jun-meng, et al. A BP neural network model for forecasting of vibration parameters from hole-by-hole detonation[J]. Explosion and Shock Waves, 2010, 30(4): 401-406. doi: 10.11883/1001-1455(2010)04-0401-06 [10] Abdelkader M, Tarek G, Kais B. Reduced complexity Volterra model of non-linear MISO system[J]. International Journal of Modelling, Identification and Control, 2012, 16(2): 134-148. http://www.ingentaconnect.com/content/ind/ijmic/2012/00000016/00000002/art00003 [11] 郭亚娟, 孟光.基于近似模型的空调配管阻尼优化设计[J].振动与冲击, 2013, 32(6): 185-189, 194. http://d.wanfangdata.com.cn/Periodical/zdycj201306036Guo Ya-juan, Meng Guang. Optimization design of pipe's damping layers in air conditioner based on approximation model[J]. Journal of Vibration and Shock, 2013, 32(6): 185-189, 194. http://d.wanfangdata.com.cn/Periodical/zdycj201306036