Blasting parameter optimization of medium-depth hole caving for steeply inclined thin veins
-
摘要: 依托金厂沟梁金矿中深孔落矿工业实验,开展急倾斜薄矿脉中深孔落矿爆破参数优化研究。基于非线性动力分析有限元软件ANSYS/LS-DYNA开展多种方案的数值模拟,分析了不同爆破参数下窄矿脉爆破应力场分布特征和窄矿脉爆破夹制作用下爆破裂隙区域的形成过程。计算结果表明,抵抗线在0.8~1.2 m范围内,相同孔距下自由面中心位置有效应力峰值随着抵抗线增大呈现衰减趋势;孔距在0.9~1.6 m范围内,相同抵抗线应力峰值随孔距增大而增大,孔距增大的同时,上下盘围岩损失程度也随之增大。选择孔网面积作为衡量依据,随炮孔密集系数增大,有效应力增量减缓,密集系数超过1.5后,矿石损失贫化加剧。综合各方案模拟结果,1.0 m×1.4 m为最优的爆破参数。将优化结果用于现场实验,爆破后采用三维激光扫描系统进行评估,实测爆区体积为设计体积的91.8%,爆破并未导致矿体上下盘围岩垮落,爆破效果良好。Abstract: On the basis of the industrial experiment of medium-depth hole caving in Jinchanggouliang Gold Mine, the authers carried out the optimization research of hole pattern blasting parameters. ANSYS/LS-DYNA was used to make several schemes of numerical simulation. Then the distribution features of the blasting stress fields under different hole pattern parameters and the formation process of the fractured blasting regions under the constrained blasting effect of narrow vein were obtained. The results show that when the resistance line is between 0.8 and 1.2 m, under the same hole spacing, the effective stress peak of the central free surface decreases with the increasing resistance line; when the hole spacing is between 0.9 and 1.6 m, it increases with the rising hole spacing under the same resistance line. As the bore hole density coefficient increases, the stress increments slow down, and the ore loss and dilution aggravate, if the bore hole density coefficient is more than 1.5. Comparison of all the schemes displays that the 1.0 m×1.4 m hole pattern parameter is the best. After employing the optimization results for the field experiment and with the CMS evaluating the blasting effect, the actual blasting zone volume covers 91.8% of the designed volume. The blast, with sound effect, did not cause the top and bottom side wall orebody to cave.
-
表 1 炮孔密集系数对关键单元应力峰值的影响
Table 1. Influence of hole density coefficient on the stress peak of the key elements
d×m S/m2 m σ/MPa 1.2 m×1.2 m 1.4 1.0 33.00 1.1 m×1.3m 1.4 1.2 47.95 1.0 m×1.4 m 1.4 1.4 71.60 0.9 m×1.6 m 1.4 1.8 76.65 1.2 m×1.1 m 1.3 1.1 50.48 1.3 m×1.0 m 1.3 1.3 62.84 1.4 m×0.95 m 1.3 1.5 75.41 1.6 m×0.8 m 1.3 2.0 79.16 1.0 m×1.2 m 1.2 1.20 51.3 0.95 m×1.3 m 1.2 1.37 73.90 0.9 m×1.3 m 1.2 1.44 75.23 -
[1] 胡际平.国外急倾斜极薄矿脉采矿方法的新发展及其借鉴意义[J].黄金, 1991, 12(2): 18-24. http://www.cqvip.com/Main/Detail.aspx?id=528282Hu Ji-ping. Advance in mining methods for steep and exceedingly narrow orebodies abroad and its practicality in China[J]. Gold, 1991, 12(2): 18-24. http://www.cqvip.com/Main/Detail.aspx?id=528282 [2] 曹永忠.急倾斜薄矿脉开采中贫化率的控制[J].湖南有色金属, 1993, 9(3): 133-136. http://www.cqvip.com/QK/83200X/199303/4001512091.htmlCao Yong-zhong. Dilution rate control in the mining of steep dip and narrow vein[J]. Hunan Nonferrous Metals, 1993, 9(3): 133-136. http://www.cqvip.com/QK/83200X/199303/4001512091.html [3] Brewis T. Narrow vein mining 1: Steep veins[J]. Mining Magazine, 1995, 173: 316-317. https://booksc.org/book/2700745/0115fb [4] Towey C A J. Narrow vein mining at Charters Towers, Queensland, by longhole open stoping[C]∥Narrow Vein Mining Conference-2008.2008: 9-12. [5] 吴贤振, 余敏, 吴强.铜坑矿中深孔凿岩爆破参数优化试验研究[J].黄金, 2011, 32(5): 31-33.Wu Xian-zhen, Yu Min, Wu Qiang. Parameter optimization for moderate-long holes blasting in Tongkeng mine[J]. 2011, 32(5): 31-33. [6] 单仁亮, 黄宝龙, 蔚振廷, 等.岩巷掘进准直眼掏槽爆破模型试验研究[J].岩石力学与工程学报, 2012, 31(2): 256-264. http://www.cqvip.com/QK/96026X/201202/41049310.htmlShan Ren-liang, Huang Bao-long, Wei Zhen-ting, et al. Model test of quasi-parallel cut blasting in rock drivage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 256-264. http://www.cqvip.com/QK/96026X/201202/41049310.html [7] 许名标, 彭德红.边坡预裂爆破参数优化研究[J].爆炸与冲击, 2008, 28(4): 355-359. doi: 10.11883/1001-1455(2008)04-0355-05Xu Ming-biao, Peng De-hong. Parameter optimization of the slope pre-splitting blasting[J]. Explosion and Shock Waves, 2008, 28(4): 355-359. doi: 10.11883/1001-1455(2008)04-0355-05 [8] 张成良, 李新平, 代翼飞.考虑损伤效应的岩锚梁光面爆破数值分析[J].岩土力学, 2007, 28(增刊): 354-358. http://www.cqvip.com/QK/94551X/2007S1/3000300865.htmlZhang Cheng-liang, Li Xin-ping, Dai Yi-fei. Numerical simulation analysis of rock anchor beam blasting considering damage effect[J]. Rock and Soil Mechanics, 2007, 28(Suppl): 354-358. http://www.cqvip.com/QK/94551X/2007S1/3000300865.html [9] 王鹏, 周传波, 耿雪峰, 等.多孔同段爆破漏斗形成机理的数值模拟研究[J].岩土力学, 2010, 31(3): 993-997. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201003061.htmWang Peng, Zhou Chuan-bo, Geng Xue-feng, et al. Numerical simulation of formation mechanism of multihole and same delay time of blasting crater[J]. Rock and Soil Mechanics, 2010, 31(3): 993-997. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201003061.htm [10] 刘优平, 龚敏, 黄刚海.深孔爆破装药结构优选数值分析方法及其应用[J].岩土力学, 2012, 33(6): 1883-1887. http://www.cqvip.com/QK/94551X/201206/41953608.htmlLiu You-ping, Gong Min, Huang Gang-hai. Numerical analysis method for optimizing charging structureof deep-hole blasting and its application[J]. Rock and Soil Mechanics, 2012, 33(6): 1883-1887. http://www.cqvip.com/QK/94551X/201206/41953608.html [11] 高文学, 刘运通.岩石动态损伤的数值模拟[J].北京工业大学学报, 2000, 26(2): 5-10. http://www.cnki.com.cn/Article/CJFDTotal-BJGD200002001.htmGao Wen-xue, Liu Yun-tong. Numerical simulations on dynamic damage in brittle rocks[J]. Journal of Beijing University Technology, 2000, 26(2): 5-10. http://www.cnki.com.cn/Article/CJFDTotal-BJGD200002001.htm [12] 王正波, 禹海涛, 袁勇.地下结构内部爆炸问题的数值建模及分析[J].地下空间与工程学报, 2011, 7(增刊): 1324-1328. http://www.cqvip.com/QK/95765A/2011S1/1003575161.htmlWang Zheng-bo, Yu Hai-tao, Yuan Yong. Study on numerical simulation method of internal blast problems in underground structures[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(Suppl): 1324-1328. http://www.cqvip.com/QK/95765A/2011S1/1003575161.html [13] 王洋, 叶海旺, 李延真.裂隙岩体爆破数值模拟研究[J].爆破, 2012, 29(3): 20-22. http://www.cqvip.com/QK/96961X/201203/43391550.htmlWang Yang, Ye Hai-wang, Li Yan-zhen. Numerical simulation on jointed and fractured rock blasting[J]. Blasting, 2012, 29(3): 20-22. http://www.cqvip.com/QK/96961X/201203/43391550.html