浮顶式储油罐的爆炸冲击失效

路胜卓 王伟 陈卫东

路胜卓, 王伟, 陈卫东. 浮顶式储油罐的爆炸冲击失效[J]. 爆炸与冲击, 2015, 35(5): 696-702. doi: 10.11883/1001-1455(2015)05-0696-07
引用本文: 路胜卓, 王伟, 陈卫东. 浮顶式储油罐的爆炸冲击失效[J]. 爆炸与冲击, 2015, 35(5): 696-702. doi: 10.11883/1001-1455(2015)05-0696-07
Lu Sheng-zhuo, Wang Wei, Chen Wei-dong. Failure characteristics of floating-roof oil storage tanks subjected to blast impact[J]. Explosion And Shock Waves, 2015, 35(5): 696-702. doi: 10.11883/1001-1455(2015)05-0696-07
Citation: Lu Sheng-zhuo, Wang Wei, Chen Wei-dong. Failure characteristics of floating-roof oil storage tanks subjected to blast impact[J]. Explosion And Shock Waves, 2015, 35(5): 696-702. doi: 10.11883/1001-1455(2015)05-0696-07

浮顶式储油罐的爆炸冲击失效

doi: 10.11883/1001-1455(2015)05-0696-07
基金项目: 国家自然科学基金项目(51508123, 51078115);黑龙江省科学基金项目(E2015046)
详细信息
    作者简介:

    路胜卓(1982—), 男, 博士, 讲师, lushengzhuo@163.com

  • 中图分类号: O381

Failure characteristics of floating-roof oil storage tanks subjected to blast impact

  • 摘要: 通过模型实验与数值模拟结果对比,探讨了浮顶油罐在可燃蒸气云爆炸冲击作用下的变形过程和破坏机理。研究发现,罐体失稳破坏的主要原因与爆炸冲击波和油罐内液体的复合冲量作用有关,在爆炸冲击作用下浮顶油罐模型产生剧烈振动,迎爆面上部罐壁形成动应力集中现象,最终导致罐体失稳并产生内凹动力屈曲破坏。
  • 图  1  动态压力测点布置示意图

    Figure  1.  Schematic arrangement of dynamic pressure measuring points

    图  2  动态应变测点布置示意图

    Figure  2.  Schematic arrangement of dynamic strain measuring points

    图  3  容积为5×104 m3的浮顶罐缩比实验模型和有限元模型

    Figure  3.  A scaled test model and a finite element model for the floating-roof tank with the volume of 5×104 m3

    图  4  容积为5×104 m3缩比实验模型罐壁不同测点的超压时程曲线对比

    Figure  4.  Contrast of overpressure history curves at different survey points from the floating-roof tank with the volume of 5×104 m3

    图  5  容积为5×104 m3的浮顶油罐缩比模型破坏形态对比

    Figure  5.  Contrast of damage states between experiment and simulation for the floating-roof tank with the volume of 5×104 m3

    6(a)  测点1动态应变时程曲线

    6(a).  Dynamic strain history curves of survey point 1

    6(b)  测点2动态应变时程曲线

    6(b).  Dynamic strain history curves of survey point 2

    6(c)  测点4动态应变时程曲线

    6(c).  Dynamic strain history curves of survey point 4

    6(d)  测点5动态应变时程曲线

    6(d).  Dynamic strain history curves of survey point 5

    6(e)  测点6动态应变时程曲线

    6(e).  Dynamic strain history curves of survey point 6

    表  1  浮顶油罐缩比模型特征参数

    Table  1.   Characteristic parameter of the scaled models for floating-roof oil storage tanks

    材料V/m3λD/mmH/mmδ/mm
    Q235-A15×1041001 1002191.5
    Q235-A10×1041008002201.2
    Q235-A5×104659233151.2
    下载: 导出CSV

    表  2  乙炔/空气混合气体与空气域数值模型相关参数

    Table  2.   Numerical model related parameters for acetylene/air mixture and air

    材料 ρ/(kg·m-3)D/(m·s-1)pCJ/GPaC0C1C2C3C4C5C6E0/(MJ·m-3)V0
    混合气体1.2782 0112.2800000.2620.26204.3481.0
    空气1.293-1.0×1050000000.251.0
    下载: 导出CSV

    表  3  容积为5×104 m3的缩比模型罐壁超压

    Table  3.   Overpressures of the wall for the floating-roof tank with the volume of 5×104 m3

    测点Δpp/MParΔpp/%t+/msrt+/%
    实验数值模拟实验数值模拟
    A0.3150.334.75.234.798.4
    B0.1980.1714.14.95.5112.5
    下载: 导出CSV

    表  4  容积为5×104 m3的缩比模型罐壁动态应变峰值

    Table  4.   Dynamic strain peaks tested at different survey points from the scaled floating-roof tank model with the volume of 5×104 m3

    测点εd, p/10-6rεd, p/%
    实验数值模拟
    11 6121 98523.1
    2-1 409-1 13819.2
    3-1 604
    41 1401 2428.9
    51 0599926.3
    675257923.0
    下载: 导出CSV
  • [1] Shebeko Y N, Bolodian I A, Molchanov V P, et al. Fire and explosion risk assessment for large-scale oil export terminal[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 651-658. http://www.sciencedirect.com/science/article/pii/S0950423007000393
    [2] Planas-Cuchi E, Vílchez J A, Casal J. Fire and explosion hazards during filling/emptying of tanks[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(6): 479-483. doi: 10.1016/S0950-4230(99)00016-9
    [3] Chang J I, Lin C C. A study of storage tank accidents[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 51-59. doi: 10.1016/j.jlp.2005.05.015
    [4] Stawczyk J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials, 2003, 96(2/3): 189-200. http://europepmc.org/abstract/MED/12493208
    [5] Hsu H L, Jean S Y. Improving seismic design efficiency of petrochemical facilities[J]. Practice Periodical on Structural Design and Construction, 2003, 8(2): 107-117. doi: 10.1061/(ASCE)1084-0680(2003)8:2(107)
    [6] 翁大根, 葛庆子.接触爆炸作用下特大型LNG储罐的动力响应分析[J].天然气工业, 2014, 34(1): 139-145. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201401028.htm

    Weng Da-gen, Ge Qing-zi. A dynamic response analysis of an extra-large LNG storage tank under blasting conditions[J]. Natural Gas Industry, 2014, 34(1): 139-145. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201401028.htm
    [7] 王震, 胡可, 赵阳.拱顶钢储罐内部蒸气云爆炸冲击荷载的数值模拟[J].振动与冲击, 2013, 32(20): 35-40. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201320008.htm

    Wang Zhen, Hu Ke, Zhao Yang. Numerical simulation for internal vapour cloud explosion loading in dome-roof steel tanks[J]. Journal of Vibration and Shock, 2013, 32(20): 35-40. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201320008.htm
    [8] 路胜卓, 王伟, 张博一.大型浮顶式储油罐的爆炸破坏机理实验[J].爆炸与冲击, 2011, 31(2): 158-164. doi: 10.11883/1001-1455(2011)02-0158-07

    Lu Sheng-zhuo, Wang Wei, Zhang Bo-yi. Experimental research on destruction mechanism of large scale floating-roof tank under blast loading[J]. Explosion and Shock Waves, 2011, 31(2): 158-164. doi: 10.11883/1001-1455(2011)02-0158-07
    [9] 刘新宇, 马林建, 马淑娜.核爆炸荷载作用下土埋钢油罐受力特性模型试验[J].解放军理工大学学报:自然科学版, 2009, 10(2): 175-178. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200902016.htm

    Liu Xin-yu, Ma Lin-jian, Ma Shu-na. Model experiment on force characteristic of soil-embedded steel oil tank under nuclear explosion[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2009, 10(2): 175-178. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200902016.htm
    [10] 周建伟, 方秦, 张亚栋.地下储液罐抗爆炸地冲击作用的流固耦合有限元分析[J].防灾减灾工程学报, 2009, 29(1): 35-43. http://www.cqvip.com/QK/90562A/20091/29650108.html

    Zhou Jian-wei, Fang Qin, Zhang Ya-dong. Numerical analysis of fluid-solid coupling of the underground liquid-storage tanks subjected to the ground shock induced by explosions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(1): 35-43. http://www.cqvip.com/QK/90562A/20091/29650108.html
    [11] 潘旭海, 徐进, 蒋军成.圆柱形薄壁储罐对爆炸冲击波动力学响应的模拟分析[J].化工学报, 2008, 59(3): 796-801. http://d.wanfangdata.com.cn/Periodical/hgxb200803041

    Pan Xu-hai, Xu Jin, Jiang Jun-cheng. Simulation analysis of dynamic response of thin-wall cylindrical tank to shock wave[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 796-801. http://d.wanfangdata.com.cn/Periodical/hgxb200803041
    [12] Livermore Software Technology Corporation. LS-DYNA keyword user's manual[M]. Livermore: Software Technology Corporation, 2007: 17-43.
    [13] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2006: 89-122.
    [14] 赵衡阳.气体和粉尘爆炸原理[M].北京: 北京理工大学出版社, 1996: 31-92.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  2859
  • HTML全文浏览量:  356
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2014-10-20
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回