Failure characteristics of floating-roof oil storage tanks subjected to blast impact
-
摘要: 通过模型实验与数值模拟结果对比,探讨了浮顶油罐在可燃蒸气云爆炸冲击作用下的变形过程和破坏机理。研究发现,罐体失稳破坏的主要原因与爆炸冲击波和油罐内液体的复合冲量作用有关,在爆炸冲击作用下浮顶油罐模型产生剧烈振动,迎爆面上部罐壁形成动应力集中现象,最终导致罐体失稳并产生内凹动力屈曲破坏。Abstract: The failure mode and mechanism of floating-roof oil storage tanks under the blast impact through the combustible gas explosion were discussed, on the basis of the scaled model tests and the numerical simulations comprehensively. It is found that the coupled impact effect of the blast wave and the liquid resulted in the bulking failure and damage of the oil storage tank body. In the process of the violent vibration, the stress concentration appeared on the upper area of the scaled model, and the tank body lost its stability and generated the concave formation and dynamic buckling area.
-
表 1 浮顶油罐缩比模型特征参数
Table 1. Characteristic parameter of the scaled models for floating-roof oil storage tanks
材料 V/m3 λ D/mm H/mm δ/mm Q235-A 15×104 100 1 100 219 1.5 Q235-A 10×104 100 800 220 1.2 Q235-A 5×104 65 923 315 1.2 表 2 乙炔/空气混合气体与空气域数值模型相关参数
Table 2. Numerical model related parameters for acetylene/air mixture and air
材料 ρ/(kg·m-3) D/(m·s-1) pCJ/GPa C0 C1 C2 C3 C4 C5 C6 E0/(MJ·m-3) V0 混合气体 1.278 2 011 2.28 0 0 0 0 0.262 0.262 0 4.348 1.0 空气 1.293 -1.0×105 0 0 0 0 0 0 0.25 1.0 表 3 容积为5×104 m3的缩比模型罐壁超压
Table 3. Overpressures of the wall for the floating-roof tank with the volume of 5×104 m3
测点 Δpp/MPa rΔpp/% t+/ms rt+/% 实验 数值模拟 实验 数值模拟 A 0.315 0.33 4.7 5.23 4.79 8.4 B 0.198 0.17 14.1 4.9 5.51 12.5 表 4 容积为5×104 m3的缩比模型罐壁动态应变峰值
Table 4. Dynamic strain peaks tested at different survey points from the scaled floating-roof tank model with the volume of 5×104 m3
测点 εd, p/10-6 rεd, p/% 实验 数值模拟 1 1 612 1 985 23.1 2 -1 409 -1 138 19.2 3 -1 604 4 1 140 1 242 8.9 5 1 059 992 6.3 6 752 579 23.0 -
[1] Shebeko Y N, Bolodian I A, Molchanov V P, et al. Fire and explosion risk assessment for large-scale oil export terminal[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 651-658. http://www.sciencedirect.com/science/article/pii/S0950423007000393 [2] Planas-Cuchi E, Vílchez J A, Casal J. Fire and explosion hazards during filling/emptying of tanks[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(6): 479-483. doi: 10.1016/S0950-4230(99)00016-9 [3] Chang J I, Lin C C. A study of storage tank accidents[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 51-59. doi: 10.1016/j.jlp.2005.05.015 [4] Stawczyk J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials, 2003, 96(2/3): 189-200. http://europepmc.org/abstract/MED/12493208 [5] Hsu H L, Jean S Y. Improving seismic design efficiency of petrochemical facilities[J]. Practice Periodical on Structural Design and Construction, 2003, 8(2): 107-117. doi: 10.1061/(ASCE)1084-0680(2003)8:2(107) [6] 翁大根, 葛庆子.接触爆炸作用下特大型LNG储罐的动力响应分析[J].天然气工业, 2014, 34(1): 139-145. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201401028.htmWeng Da-gen, Ge Qing-zi. A dynamic response analysis of an extra-large LNG storage tank under blasting conditions[J]. Natural Gas Industry, 2014, 34(1): 139-145. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201401028.htm [7] 王震, 胡可, 赵阳.拱顶钢储罐内部蒸气云爆炸冲击荷载的数值模拟[J].振动与冲击, 2013, 32(20): 35-40. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201320008.htmWang Zhen, Hu Ke, Zhao Yang. Numerical simulation for internal vapour cloud explosion loading in dome-roof steel tanks[J]. Journal of Vibration and Shock, 2013, 32(20): 35-40. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201320008.htm [8] 路胜卓, 王伟, 张博一.大型浮顶式储油罐的爆炸破坏机理实验[J].爆炸与冲击, 2011, 31(2): 158-164. doi: 10.11883/1001-1455(2011)02-0158-07Lu Sheng-zhuo, Wang Wei, Zhang Bo-yi. Experimental research on destruction mechanism of large scale floating-roof tank under blast loading[J]. Explosion and Shock Waves, 2011, 31(2): 158-164. doi: 10.11883/1001-1455(2011)02-0158-07 [9] 刘新宇, 马林建, 马淑娜.核爆炸荷载作用下土埋钢油罐受力特性模型试验[J].解放军理工大学学报:自然科学版, 2009, 10(2): 175-178. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200902016.htmLiu Xin-yu, Ma Lin-jian, Ma Shu-na. Model experiment on force characteristic of soil-embedded steel oil tank under nuclear explosion[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2009, 10(2): 175-178. http://www.cnki.com.cn/Article/CJFDTotal-JFJL200902016.htm [10] 周建伟, 方秦, 张亚栋.地下储液罐抗爆炸地冲击作用的流固耦合有限元分析[J].防灾减灾工程学报, 2009, 29(1): 35-43. http://www.cqvip.com/QK/90562A/20091/29650108.htmlZhou Jian-wei, Fang Qin, Zhang Ya-dong. Numerical analysis of fluid-solid coupling of the underground liquid-storage tanks subjected to the ground shock induced by explosions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(1): 35-43. http://www.cqvip.com/QK/90562A/20091/29650108.html [11] 潘旭海, 徐进, 蒋军成.圆柱形薄壁储罐对爆炸冲击波动力学响应的模拟分析[J].化工学报, 2008, 59(3): 796-801. http://d.wanfangdata.com.cn/Periodical/hgxb200803041Pan Xu-hai, Xu Jin, Jiang Jun-cheng. Simulation analysis of dynamic response of thin-wall cylindrical tank to shock wave[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 796-801. http://d.wanfangdata.com.cn/Periodical/hgxb200803041 [12] Livermore Software Technology Corporation. LS-DYNA keyword user's manual[M]. Livermore: Software Technology Corporation, 2007: 17-43. [13] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2006: 89-122. [14] 赵衡阳.气体和粉尘爆炸原理[M].北京: 北京理工大学出版社, 1996: 31-92.