高速侵彻弹体层合木靶脱壳

申超 皮爱国 刘柳 刘坚成 黄风雷

申超, 皮爱国, 刘柳, 刘坚成, 黄风雷. 高速侵彻弹体层合木靶脱壳[J]. 爆炸与冲击, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06
引用本文: 申超, 皮爱国, 刘柳, 刘坚成, 黄风雷. 高速侵彻弹体层合木靶脱壳[J]. 爆炸与冲击, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06
Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06
Citation: Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06

高速侵彻弹体层合木靶脱壳

doi: 10.11883/1001-1455(2015)05-0711-06
基金项目: 国家自然科学基金项目(11202029)
详细信息
    作者简介:

    申超(1989—), 男, 硕士研究生

    通讯作者:

    皮爱国, aiguo_pi@bit.edu.cn

  • 中图分类号: O385

Discarding the sabot of a high-velocity projectile by a laminated wood target

  • 摘要: 利用实验和数值模拟方法研究一种利用层合松木靶作为脱壳装置的机械式脱壳方法。首先讨论了一种正交各向异性材料模型用于高速侵彻木材的可行性及其参数变化规律,结合美军的高速侵彻实验数据对数值模拟方案进行了验证与确认。在此基础上,讨论了不同弹靶作用下含弹托弹体对松木靶的侵彻/贯穿规律。数值模拟与实验研究结果表明:在垂直入射条件下,通过合理的层合木靶设计可对次口径发射弹体有效脱壳,高速侵彻弹体可垂直入射靶板,弹体速度衰减可控;在初始攻角入射条件下,层合靶将使高速侵彻弹体攻角放大。随入射速度增加,弹体贯穿层合木靶消耗动能增加,体现了木材具有明显的应变率增强效应。
  • 图  1  木材的应变率增强效应实验结果与理论模型结果的比较[4]

    Figure  1.  Strain-rate strengthening effect of wood obtained by experiment and theoretical model[4]

    图  2  数值模拟得到的含水质量分数30%的木材的应力应变关系

    Figure  2.  Stress-strain relationships obtained by numerical simulation for the wood with the water mass fraction of 30%

    图  3  在模拟与实验速度衰减和过载历史对比

    Figure  3.  Experimental velocity and deceleration histories compared with ones by numerical simulation

    图  4  不同着速弹丸贯穿同一厚度层合木靶的动能损失

    Figure  4.  The kinetic energy loss of the projectiles with different impact velocities penetrating into the laminated wood targets with the same thickness

    图  5  不同着速下的过载曲线

    Figure  5.  Deceleration history curves at different impact velocities

    图  6  R取值与靶板强度的关系

    Figure  6.  Relationship between coefficient R and target strength

    图  7  高速侵彻弹体贯穿层合松木靶实验照片

    Figure  7.  Photos for high-velocity projectiles penetrating into laminated pine targets

    图  8  过载变化

    Figure  8.  Deceleration varied with time

    图  9  速度变化

    Figure  9.  Velocity varied with time

    图  10  弹轴与靶板法线的夹角随时间的变化

    Figure  10.  Variation of the angle between the axis of the projectile and the normal of the target with time

  • [1] Luther H W. Fin stabilized, subcaliber propelling cage sobot projectile: USA, US4920889 A[P]. 1990-05-01.
    [2] Eches N, Bachelier J, Leblond J, et al. Sabot for fin-stabilized ammunition: USA, US6805058 B2[P]. 2004-10-19.
    [3] Doolittle C, Malechuk D. Mid-scale testing and simulation of fuze terminal ballistic environments[C]∥51st Annual Fuze Conference. Nashville, 2007.
    [4] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. http://www.sciencedirect.com/science/article/pii/S0734743X9700016X
    [5] Berberovic A, Milota M R. Impact of wood variability on the drying rate at different moisture content levels[J]. Forest Products Journal, 2011, 61(6): 3425585. http://www.freepatentsonline.com/article/Forest-Products-Journal/279613792.html
    [6] Beltrame R, Mattos B D, Gatto D A, et al. Impact strength of nogueira-pecãwood on different moisture conditions[J]. Ciência Rural, 2012, 42(9): 1583-1587. doi: 10.1590/S0103-84782012005000060
    [7] Murray Y D. Manual for LS-DYNA wood material model 143[R]. FHWA-HRT-04-097, 2007.
    [8] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4
  • 加载中
图(10)
计量
  • 文章访问数:  2828
  • HTML全文浏览量:  370
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-21
  • 修回日期:  2014-08-13
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回