Reinforcing design of openings of a spherical explosive containment vessel
-
摘要: 参考压力容器设计标准,针对某实验用球形爆炸容器进行了开孔补强设计,对容器开孔处等效应变随接管壁厚、补强圈尺寸的变化规律进行了数值计算,确定了“5/3倍球壳厚度的接管”配合“与球壳等厚度、张角10°的补强圈”的开孔补强设计方案。并对数值计算结果和补强设计进行了实验验证。Abstract: Reinforcing design for the opening on a certain experiment-used spherical explosive containment vessel was carried out referring to the pressure vessel code GB150-2011. The relationships between the effective plastic strain around the opening and the geometrical parameters of the nozzle and the reinforcing ring were investigated by numerical simulation. And a reinforcing scheme was proposed which included a nozzle with the wall thickness equal to 5/3 times of the wall thickness of the main spherical shell and a 10°-reinforcing ring with the same thickness to the main spherical shell wall. Experiments were performed to validate the reliability of the simulation results and the rationality of the reinforcing scheme.
-
表 1 连接处等效应变随补强圈尺寸变化情况
Table 1. The effective strain of the junction varied with the geometrical size of the reinforcing ring
δH/H εj (εj, s-εj)/εj εj (εj, s-εj)/εj εj (εj, s-εj)/εj φs=5° φs=10° φs=15° 0.5 0.081 -43% 0.067 -53% 0.057 -60% 1.0 0.043 -70% 0.022 -85% 0.020 -86% 1.5 0.020 -86% 0.008 -94% 0.009 -94% 表 2 厚壁接管配合补强圈计算结果(φs=10°)
Table 2. Simulation results of the model for the thick-walled nozzle with a reinforcing ring (φs=10°)
δH εr, max εn, max h/H=1 h/H=5/3 h/H=1 h/H=5/3 1.0H 0.022 0.012 0.057 0.021 1.5H 0.008 0.003 0.011 0.005 -
[1] Weiβ E, Rudolph J. Finite element analyses concerning the fatigue strength of nozzle-to-spherical shell intersections[J]. International Journal of Pressure Vessels and Piping, 1995, 64(2): 101-109. doi: 10.1016/0308-0161(94)00074-S [2] Weiβ E, Rauth M, Rudolph J. Fatigue behavior of oblique nozzles on cylindrical shells submitted to internal pressure and axial forces[J]. International Journal of Pressure Vessels and Piping, 1998, 75(6): 473-481. doi: 10.1016/S0308-0161(98)00050-7 [3] Dekker C J, Stikvoort W J. Pressure stress intensity at nozzles on cylindrical vessels: A comparison of calculation methods[J]. International Journal of Pressure Vessels and Piping, 1997, 74(2): 121-128. doi: 10.1016/S0308-0161(97)00106-3 [4] Dekker C J, Brink H J. Nozzles on spheres with outward weld area under internal pressure analysed by FEM and thin shell theory[J]. International Journal of Pressure Vessels and Piping, 2000, 77(7): 399-415. doi: 10.1016/S0308-0161(00)00043-0 [5] Dekker C J, Bos H J. Nozzles: On external loads and internal pressure[J]. International Journal of Pressure Vessels and Piping, 1997, 72(1): 1-18. doi: 10.1016/S0308-0161(97)00014-8 [6] Liu J S, Parks G T, Clarkson P J. Shape optimisation of axisymmetric cylindrical nozzles in spherical pressure vessels subject to stress constraints[J]. International Journal of Pressure Vessels and Piping, 2001, 78(1): 1-9. doi: 10.1016/S0308-0161(00)00065-X [7] 国家质量监督检验总局.压力容器: GB150.1-150.4-2011[S].北京: 中国标准出版社, 2011. [8] 张德志.柱形爆炸容器载荷与塑性结构响应研究[D].西安: 西北核技术研究所, 2012.