Determination of safety coefficient for predicting blasting vibration velocity
-
摘要: 基于爆破振动速度预测公式回归分析的基本原理,提出根据建筑物不同安全等级应选择一定的可靠性指标,并推导了预测爆破振动速度公式中所含安全保证系数的计算过程。为简化计算过程,又进一步提出了基于监测数据量、回归分析相关系数以及可靠性指标的关于安全保证系数计算的经验公式。经过大量监测数据验证了该经验公式的计算精度和可靠性均能满足工程实际需要,从而修正了萨氏公式预测精确度不够的缺陷,可为重要建筑物周边的安全爆破设计提供参考。Abstract: The basic principle of regression analysis was considered for the prediction formula of blasting vibration velocity. On the basis of the considered principle, an opinion was put forward that certain reliability indexes should be chosen according to the safety levels of buildings. And the calculation process was deduced for the safety assurance coefficient included in the prediction formula of blasting vibration velocity. To simplify the calculation process, an empirical calculation formula was proposed for the safety assurance coefficient based on the parameters consisting of amount of monitoring data, correlation coefficient of regression analysis, and reliability index. The accuracy and reliability of the empirical calculation formula was verified by the monitoring data in actual projects. The investigated results show that the empirical calculation formula can meet the practical needs and it can make up the shortcoming that the accuracy of Sadov's formula is not enough. So the empirical calculation formula proposed can provide a reference for the design of safety blasting surrounding important buildings.
-
表 1 油库方向监测数据
Table 1. Data monitored along the direction from the quarry to the oil depot
测点编号 R/m Q/kg qmax/kg vh, t/(cm·s-1) vh, l/(cm·s-1) vv/(cm·s-1) 1
2335
3406 420 350 0.48
0.460.41
0.460.64
0.573
4
5
6
7339
387
431
465
4952 872 288 0.31
0.24
0.22
0.17
0.310.38
0.29
0.20
0.16
0.090.40
0.22
0.33
0.22
0.228
9
10297
307
2422 040 264 0.40
0.32
0.910.22
0.27
0.290.84
0.49
1.0111
12
13288
300
2322 408 276 0.51
0.45
0.880.43
0.40
0.760.59
0.36
0.9914
15
16364
363
3272 832 386 0.55
0.52
0.560.25
0.31
0.520.69
0.51
0.7317
18275
2873 168 280 0.70
0.530.46
0.370.79
0.5919
20401
4107 000 387 0.39
0.250.38
0.310.55
0.3721 181 2 848 183 0.54 0.51 0.62 22
23173
1963 720 186 0.63
0.430.61
0.410.64
0.5924
25
26
27
28309
324
321
347
3644 928 264 0.48
0.30
0.30
0.28
0.260.34
0.32
0.23
0.26
0.210.44
0.31
0.52
0.30
0.31表 2 计算结果
Table 2. Calculation results
方向 K α r γs, r γs, e 1-β=95% 1-β=99% 1-β=95% 1-β=99% 水平纵向 130.4 1.45 0.77 1.75 2.15 1.87 2.34 水平横向 152.9 1.59 0.79 1.73 2.12 1.85 2.29 垂直向 179.4 1.53 0.74 1.90 2.39 1.99 2.54 -
[1] 刘殿书.爆破工程[M].北京: 科学出版社, 2011: 98-133. [2] 吕涛, 石永强, 黄诚, 等.非线性回归分析法求解爆破震动速度衰减公式参数[J].岩土力学, 2007, 28(9): 1871-1878. http://www.cqvip.com/Main/Detail.aspx?id=25430136Lü Tao, Shi Yong-qiang, Huang Cheng, et al. Study on attenuation parameters of blasting vibration by nonlinear regression analysis[J]. Rock and Soil Mechanics, 2007, 28(9): 1871-1878. http://www.cqvip.com/Main/Detail.aspx?id=25430136 [3] 言志信, 王永和, 江平, 等.爆破地震测试及建筑结构安全标准研究[J].岩石力学与工程学报. 2003, 22(11): 1907-1911.Yan Zhi-xin, Wang Yong-he, Jiang Ping, et al. Study on measurement of blast-induced seism and building safety criteria[J]. Journal of Rock Mechanics and Engineering, 2003, 22(11): 1907-1911. [4] 中国工程爆破协会. GB6722-2011, 爆破安全规程[S].北京: 中国标准出版社, 2011. [5] 杨佑发, 崔波.爆破震动速度峰值预测[J].振与冲击, 2009, 28(10): 195-198. http://www.cqvip.com/Main/Detail.aspx?id=31994360Yang You-fa, Cui Bo. Prediction for vibration intensity due to blasting induced ground motions[J]. Journal of Vibration and Shock, 2009, 28(10): 195-198. http://www.cqvip.com/Main/Detail.aspx?id=31994360 [6] 盛骤.概率论与数理统计[M].北京: 高等教育出版社, 2008: 40-60. [7] Kim D S, Lee J S. Propagation and attenuation characteristics of various ground vibrations[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(2): 115-126. doi: 10.1016/S0267-7261(00)00002-6 [8] 杜汉清.爆破振动衰减规律的现场试验研究[J].爆破, 2007, 24(3): 107-109. http://www.cqvip.com/Main/Detail.aspx?id=25457763Du Han-qing. Experimentally study on the attenuation law of blasting vibration[J]. Blasting, 2007, 24(3): 107-109. http://www.cqvip.com/Main/Detail.aspx?id=25457763 [9] 毕卫国, 石崇.爆破振动速度衰减公式的优化选择[J].岩土力学, 2004, 25(增刊): 99-102. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2004S100N.htmBi Wei-guo, Shi Chong. Optimization selection of blasting vibration velocity attenuation formulas[J]. Rock and Soil Mechanics, 2004, 25(Suppl): 99-102. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2004S100N.htm 期刊类型引用(13)
1. 王梓宇,李胜林,李黎,凌天龙,梁书锋,孙旭. 隧道爆破地震作用下燃气管道动力响应规律研究. 爆破. 2024(03): 212-221+247 . 百度学术
2. 郭映聪. 基于小波分析基坑钻爆开挖地震效应预测研究. 市政技术. 2023(02): 126-132 . 百度学术
3. 李辉,王董东,杜文康,弓煜. 安家岭煤矿爆破振速预测与安全允许距离研究. 煤炭工程. 2023(10): 156-161 . 百度学术
4. 代树红,安志奎,王晓晨,韩荣军. 露天煤矿爆破振动速度计算公式研究. 辽宁工程技术大学学报(自然科学版). 2022(01): 41-46 . 百度学术
5. 宋宏坤. 基于爆破振速衰减规律的爆破振动控制技术. 中外公路. 2022(02): 188-193 . 百度学术
6. 贾海鹏,刘殿书,方真刚,田帅康. 地铁隧道钻爆法施工中敏感区间及安全药量确定. 北京理工大学学报. 2021(01): 23-29 . 百度学术
7. 万嗣鹏,陶铁军,陈二平,刘永明,杨志强. 考虑岩体抗拉强度的爆破振动速度衰减多元非线性模型. 爆破器材. 2020(03): 53-58 . 百度学术
8. 王林峰,邓冰杰,莫诎,赵精富,肖弘光. 基于概率论的爆破振动安全评估与控制. 振动与冲击. 2020(14): 122-129 . 百度学术
9. 周文海,梁瑞,余建平,杜超飞,王敦繁,楼晓明. 边坡抛掷爆破峰值质点振动速度的无量纲分析. 爆炸与冲击. 2019(05): 76-83 . 本站查看
10. 袁旺小. 隧道掘进爆破地表振速的预测研究. 公路交通科技(应用技术版). 2019(05): 257-259 . 百度学术
11. 周文海,余建平,梁瑞,吕亚茹,王敦繁,陈宗杰. 基于逐步回归算法的边坡爆破振动控制研究. 长江科学院院报. 2019(07): 89-95 . 百度学术
12. 王奋,范勇,周宜红,赵春菊,严鹏. 隧洞爆破地震波作用下临近水电站的安全性评估. 爆破. 2017(02): 132-137 . 百度学术
13. 王玉乐,罗周全,谢承煜,随晓丹,曹祖华. 深孔爆破对隐患资源开采两帮的动力响应特性研究. 爆破. 2017(04): 33-39 . 百度学术
其他类型引用(6)
-