Explosion characteristics of dimethyl ether/air/argon mixtures
-
摘要: 在20 L球形爆炸容器中对二甲醚/空气(DME/air)、二甲醚/空气/氩气(DME/air/Ar)混合物在不同初始状态下的爆炸特性进行实验研究,分析了不同初始压力、不同氩气(Ar)稀释浓度对爆炸极限、最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:DME/air混合物的最大爆炸压力和最大爆炸压力上升速率与DME在混合物中的浓度呈圆顶形关系,最大值出现在DME在混合物中的浓度为6.5%(即最佳当量比, φ=1)附近;初始压力的下降明显降低了DME/air混合物的爆炸上限,但对于其爆炸下限影响不显著;Ar的稀释对富燃DME/air混合物的最大爆炸压力和最大爆炸压力上升速率有显著的惰化作用,但对于贫燃DME/air混合物,最大爆炸压力和最大爆炸压力上升速率在一定的Ar稀释浓度范围内出现上升趋势,当Ar的稀释浓度大于20%,这2个爆炸参数值逐渐下降。Abstract: Explosion characteristics of dimethyl ether (DME)/air and DME/air/ argon (Ar) mixtures were studied by using a 20-L spherical explosion-containment vessel under different initial conditions. This paper analyzed the effects of different initial conditions (e.g., pressures, Ar dilution) on the explosion parameters including explosion limits, maximum explosion pressure and maximum rise rate of explosion pressure. A dome-shaped relationship was found between maximum explosion pressure and DME concentration. And there lies a dome-shaped relationship between maximum explosion pressure rise rate and DME concentration. Their maximum values appear in the vicinity of the stoichiometric composition. Lowering the initial pressure can significantly decrease the upper flammability limit, but has no influence on the lower explosion limit. For fuel-rich DME/air mixtures, Ar dilution can greatly decrease the maximum explosion pressure and the maximum rise rate of explosion pressure. For fuel-lean ones, in a certain range of Ar concentration, the maximum explosion pressure and the maximum rise rate of explosion pressure increase with the increasing of Ar concentration. And these explosion parameters decrease eventually with the increasing of Ar concentration over 20%.
-
表 1 不同初始压力下DME/air混合物的爆炸上限和下限
Table 1. Upper and lower explosion limits of DME-air mixtures at different initial pressures
p0/kPa x(DME)LEL/% x(DME)UEL/% 100 3.50 19.00 80 3.75 15.00 60 3.33 14.17 40 3.75 12.50 -
[1] Semelsberger T A, Borup R L, Greene H L. Dimethyl ether(DME)as an alternative fuel[J]. Journal of Power Sources. 2006, 156(2): 497-511. [2] Arcoumanis C, Bae C, Crookes R, et al. The potential of dimethyl ether(DME)as an alternative fuel for compression-ignition engines: A review[J]. Fuel, 2008, 87(7): 1014-1030. doi: 10.1016/j.fuel.2007.06.007 [3] Mogi T, Horiguchi S. Explosion and detonation characteristics of dimethyl ether[J]. Journal of Hazardous Materials, 2009, 164(1): 114-119. doi: 10.1016/j.jhazmat.2008.07.133 [4] Ng H D, Chao J, Yatsufusa T, et al. Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether-oxygen mixtures[J]. Fuel, 2009, 88(1): 124-131. https://www.sciencedirect.com/science/article/pii/S0016236108003025 [5] 黄震, 乔信起, 张武高, 等.二甲醚发动机与汽车研究[J].内燃机学报, 2008, 26(增刊): 15-125.Huang Zhen, Qiao Xin-qi, Zhang Wu-gao, et al. Research and development of a DME engine and vehicle[J]. Transactions of CSICE, 2008, 26(suppl): 15-125. [6] 李德钢, 黄震, 乔信起, 等.二甲醚燃料均质压燃燃烧研究[J].内燃机学报, 2005, 23(3): 193-198.Li De-gang, Huang Zhen, Qiao Xin-qi, et al. Study on HCCI combustion fueled with DME[J]. Transactions of CSICE, 2005, 23(3): 193-198. [7] 李伟, 张希良.国内二甲醚研究述评[J].煤炭转化, 2007, 30(3): 88-95.Li Wei, Zhang Xi-liang. Review of dimethyl ether reseaches in China[J]. Coal Conversion, 2007, 30(3): 88-95. [8] Vries J D, Lowry W B, Serinyel Z, et al. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm[J]. Fuel, 2011, 90(1): 331-338. doi: 10.1016/j.fuel.2010.07.040 [9] Fast G, Kuhn D, Class A G, et al. Auto-ignition during instationary jet evolution of dimethyl ether(DME)in a high-pressure atmosphere[J]. Combustion and Flame, 2009, 156(1): 200-213. https://www.sciencedirect.com/science/article/pii/S0010218008002149 [10] Zhang Ni, Di Ya-ge, Huang Zuo-hua, et al. Experimental study on combustion characteristics of N2-diluted diethyl ether-air mixtures[J]. Energy and Fuels, 2009, 23(12): 5798-5805. doi: 10.1021/ef900633z [11] Pan Lun, Hu Er-jiang, Zhang Jia-xiang, et al. Experimental and kinetic study on ignition delay times of DME/H2/O2/Ar mixtures[J]. Combustion and Flame, 2014, 161(3): 735-747. https://www.sciencedirect.com/science/article/pii/S0010218013003891 [12] Chen Rong, Wang Hui-tao, Wang Hua. Different oxygen levels of dimethyl ether combustion influence numerical simulation[J]. Procedia Engineering, 2012, 31: 934-940. doi: 10.1016/j.proeng.2012.01.1124 [13] Dagaut P, Daly C, Simmie J M, et al. The oxidation and ignition of dimethyl ether from low to high temperature(500-1600 K): Experiments and kinetic modeling[J]. Symposium(International)on Combustion, 1998, 27(1): 361-369. https://www.sciencedirect.com/science/article/pii/S0082078498804244 [14] Zhang Bo, Xiu Guang-li, Bai Chun-hua. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures[J]. Fuel, 2014, 124: 125-132. doi: 10.1016/j.fuel.2014.01.090 [15] Zhang B, Kamenskihs V, Ng H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures[J]. Proceedings of the Combustion Institute, 2011, 33(3): 2265-2271. https://www.sciencedirect.com/science/article/pii/S1540748910003603 [16] Zhang B, Mehrjoo N, Ng H D, et al. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution[J]. Combustion and Flame, 2014, 161(5): 1390-1397. doi: 10.1016/j.combustflame.2013.11.016 [17] Zhang B, Ng H D, Lee J H S. The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures[J]. Combustion and Flame, 2012, 159(9): 2944-2953. doi: 10.1016/j.combustflame.2012.06.010 [18] Zhang B, Ng H D, Mével R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5707-5716. doi: 10.1016/j.ijhydene.2011.01.175 [19] Morley C. Gaseq: A chemical equilibrium program for windows[M/OL]. [2013-10-26]. http://www.c.morley.dsl.pipex.com.