The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading
-
摘要: 基于有限长度柱壳的Gurney速度公式,以壳体平均半径估算平均应变率,同时考虑壳体剪切断裂时的断裂面长度与径向壁厚的差异,对Grady-Kipp方法进行了修正,得到柱壳剪切断裂模式下环周分裂数的完整表达式。利用修正方法分析得到的环周分裂数计算结果与实验数据分析结果符合更好。以20号低碳钢柱壳为例,对其在TNT爆炸加载下的膨胀断裂进行了三维数值模拟,得到的环周分裂数模拟结果与实验结果符合较好。Abstract: Based on the Gurney velocity formula for cylindrical shells with finite length, the average strain rate was estimated by the average radius of the shell. And by taking into account the differences between the shear fracture surface length of the shell and the radial thickness, the Grady-Kipp method was modified to give a full expression for the number of the circumferential fragments of the cylindrical shell. The number of the circumferential fragments number calculated by the modified Grady-Kipp method can better match with the experimental result than one by the Grady theory. The 20# low-carbon steel was taken as an example to numerically simulate the expansion and fracture of low-carbon steel shells under TNT explosion loading. The numbers of the circumferential fragments of the low-carbon steel shells by numerical simulation are in agreement with the experimental one.
-
表 1 柱壳环周分裂数的三维数值模拟工况
Table 1. 3D numerical simulation conditions of circumferential fragments number
工况 r1/mm r2/mm le/mm L/mm 1 10 12 100 80 2 10 13.3 100 80 3 10 15 100 80 4 10 20 100 80 5 20 24 200 160 6 20 26.6 200 160 7 20 30 200 160 8 20 40 200 160 表 2 典型工况下柱壳环周分裂数
Table 2. Circumferential fragments number of typical conditions
工况 δd nθ 数值模拟 实验 1 1/12 33 2 1/8 28 3 1/6 27 4 1/4 21 5 1/12 42 6 1/8 36 7 1/6 30 28 8 1/4 22 -
[1] Mott N F. Fragmentations of shell cases[J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300-308. [2] Grady D E, Olsen M L. A statistics and energy based theory of dynamic fragmentation[J]. International Journal of Impact Engineering, 2003, 29(1): 293-306. http://www.sciencedirect.com/science/article/pii/S0734743X03001325 [3] Grady D E. Fragment size distributions from the dynamic fragmentation of brittle solids[J]. International Journal of Impact Engineering, 2008, 35(12): 1557-1562. https://www.sciencedirect.com/science/article/pii/S0734743X08001528 [4] Grady D E. Fragmentation of rings and shells: The legacy of N. F. Mott[M]. Springer, 2006. [5] Arnold W, Rottenkolber E. Fragment mass distribution of metal cased explosive charges[J]. International Journal of Impact Engineering, 2008, 35(12): 1393-1398. https://www.sciencedirect.com/science/article/pii/S0734743X08001693 [6] 奥尔连科.爆炸物理学: 下[M].孙承纬, 译.北京: 科学出版社, 2011. [7] 鲁宇, 周兰庭.爆炸环动态破裂分析[J].兵工学报, 1991(1): 86-90. http://www.cnki.com.cn/Article/CJFDTotal-BIGO199101014.htmLu Yu, Zhou Lan-ting. Dynamic fracture of explosion rings[J]. Acta Armamentarii, 1991(1): 86-90. http://www.cnki.com.cn/Article/CJFDTotal-BIGO199101014.htm [8] 陈磊, 周风华, 汤铁钢.韧性金属圆环高速膨胀碎裂过程的有限元模拟[J].力学学报, 2011, 43(5): 861-870. http://d.wanfangdata.com.cn/periodical/lxxb201105010Chen Lei, Zhou Feng-hua, Tang Tie-gang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Acta Mechanica Sinica, 2011, 43(5): 861-870. http://d.wanfangdata.com.cn/periodical/lxxb201105010 [9] 王永刚, 周风华.径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究[J].固体力学学报, 2008, 29(3): 245-249. http://www.cnki.com.cn/Article/CJFDTotal-GTLX200803004.htmWang Yong-gang, Zhou Feng-hua. Experimental study on the dynamic tensile fragmentations of Al2O3 rings under radial expansion[J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245-249. http://www.cnki.com.cn/Article/CJFDTotal-GTLX200803004.htm [10] Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYN user's manual[M]. Revision 14.0, 2011. [11] Lambert D E, Weiderhold J. Explosively driven fragmentation experiments for continuum damage modeling[J]. Journal of Pressure Vessel Technology, 2012, 134(3): 031209-7. https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2010/44465/615/359653 [12] Grady D E, Kipp M E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids[J]. Journal of the Mechanics and Physics of Solids, 1987, 35(1): 95-119. https://www.sciencedirect.com/science/article/pii/0022509687900305 [13] Grady D E, Hightower M M. Natural fragmentation of exploding cylinders: DE90016108[R]. Albuquerque, NM: Sandia National Labs, 1990. [14] 蒋建伟, 张谋, 门建兵.小口径榴弹自然破片形成过程的数值模拟[J].弹箭与制导学报, 2009, 29(1): 114-117. http://www.cnki.com.cn/Article/CJFDTotal-DJZD200901033.htmJiang Jian-wei, Zhang Mou, Men Jian-bing. Numerical simulation of the formation of natural fragments from a small caliber shell[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 114-117. http://www.cnki.com.cn/Article/CJFDTotal-DJZD200901033.htm [15] Allen S P. Stress-wave monitoring of erosive particle impacts[D]. Australia: The University of Newcastle, 2004. [16] 宋浦, 杨凯, 梁安定, 等.国内外TNT炸药的JWL状态方程及其能量释放差异分析[J].火炸药学报, 2013, 36(2): 42-45. http://www.cqvip.com/QK/90400B/201302/45849149.htmlSong Pu, Yang Kai, Liang An-ding, et al. Difference analysis on JWL-EOS and energy release of different TNT charge[J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 42-45. http://www.cqvip.com/QK/90400B/201302/45849149.html