内部爆炸加载下柱壳的环周分裂数

张志彪 黄风雷

张志彪, 黄风雷. 内部爆炸加载下柱壳的环周分裂数[J]. 爆炸与冲击, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05
引用本文: 张志彪, 黄风雷. 内部爆炸加载下柱壳的环周分裂数[J]. 爆炸与冲击, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05
Zhang Zhi-biao, Huang Feng-lei. The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading[J]. Explosion And Shock Waves, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05
Citation: Zhang Zhi-biao, Huang Feng-lei. The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading[J]. Explosion And Shock Waves, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05

内部爆炸加载下柱壳的环周分裂数

doi: 10.11883/1001-1455(2015)05-0763-05
详细信息
    作者简介:

    张志彪(1986—), 男, 博士研究生

    通讯作者:

    黄风雷, huangfl@bit.edu.cn

  • 中图分类号: O383

The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading

  • 摘要: 基于有限长度柱壳的Gurney速度公式,以壳体平均半径估算平均应变率,同时考虑壳体剪切断裂时的断裂面长度与径向壁厚的差异,对Grady-Kipp方法进行了修正,得到柱壳剪切断裂模式下环周分裂数的完整表达式。利用修正方法分析得到的环周分裂数计算结果与实验数据分析结果符合更好。以20号低碳钢柱壳为例,对其在TNT爆炸加载下的膨胀断裂进行了三维数值模拟,得到的环周分裂数模拟结果与实验结果符合较好。
  • 图  1  计算模型示意图(工况7)

    Figure  1.  Sketch of calculation model (condition 7)

    图  2  工况7壳体破裂图像

    Figure  2.  The image for the broken shell of condition 7

    图  3  内半径为10,20 mm时环周分裂数与外半径的关系

    Figure  3.  Relationship between the circumferential fragments number and the outer radius when the inner radius is 10, 20 mm

    表  1  柱壳环周分裂数的三维数值模拟工况

    Table  1.   3D numerical simulation conditions of circumferential fragments number

    工况r1/mmr2/mmle/mmL/mm
    1101210080
    21013.310080
    3101510080
    4102010080
    52024200160
    62026.6200160
    72030200160
    82040200160
    下载: 导出CSV

    表  2  典型工况下柱壳环周分裂数

    Table  2.   Circumferential fragments number of typical conditions

    工况δdnθ
    数值模拟实验
    11/1233
    21/828
    31/627
    41/421
    51/1242
    61/836
    71/63028
    81/422
    下载: 导出CSV
  • [1] Mott N F. Fragmentations of shell cases[J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300-308.
    [2] Grady D E, Olsen M L. A statistics and energy based theory of dynamic fragmentation[J]. International Journal of Impact Engineering, 2003, 29(1): 293-306. http://www.sciencedirect.com/science/article/pii/S0734743X03001325
    [3] Grady D E. Fragment size distributions from the dynamic fragmentation of brittle solids[J]. International Journal of Impact Engineering, 2008, 35(12): 1557-1562. https://www.sciencedirect.com/science/article/pii/S0734743X08001528
    [4] Grady D E. Fragmentation of rings and shells: The legacy of N. F. Mott[M]. Springer, 2006.
    [5] Arnold W, Rottenkolber E. Fragment mass distribution of metal cased explosive charges[J]. International Journal of Impact Engineering, 2008, 35(12): 1393-1398. https://www.sciencedirect.com/science/article/pii/S0734743X08001693
    [6] 奥尔连科.爆炸物理学: 下[M].孙承纬, 译.北京: 科学出版社, 2011.
    [7] 鲁宇, 周兰庭.爆炸环动态破裂分析[J].兵工学报, 1991(1): 86-90. http://www.cnki.com.cn/Article/CJFDTotal-BIGO199101014.htm

    Lu Yu, Zhou Lan-ting. Dynamic fracture of explosion rings[J]. Acta Armamentarii, 1991(1): 86-90. http://www.cnki.com.cn/Article/CJFDTotal-BIGO199101014.htm
    [8] 陈磊, 周风华, 汤铁钢.韧性金属圆环高速膨胀碎裂过程的有限元模拟[J].力学学报, 2011, 43(5): 861-870. http://d.wanfangdata.com.cn/periodical/lxxb201105010

    Chen Lei, Zhou Feng-hua, Tang Tie-gang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Acta Mechanica Sinica, 2011, 43(5): 861-870. http://d.wanfangdata.com.cn/periodical/lxxb201105010
    [9] 王永刚, 周风华.径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究[J].固体力学学报, 2008, 29(3): 245-249. http://www.cnki.com.cn/Article/CJFDTotal-GTLX200803004.htm

    Wang Yong-gang, Zhou Feng-hua. Experimental study on the dynamic tensile fragmentations of Al2O3 rings under radial expansion[J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245-249. http://www.cnki.com.cn/Article/CJFDTotal-GTLX200803004.htm
    [10] Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYN user's manual[M]. Revision 14.0, 2011.
    [11] Lambert D E, Weiderhold J. Explosively driven fragmentation experiments for continuum damage modeling[J]. Journal of Pressure Vessel Technology, 2012, 134(3): 031209-7. https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2010/44465/615/359653
    [12] Grady D E, Kipp M E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids[J]. Journal of the Mechanics and Physics of Solids, 1987, 35(1): 95-119. https://www.sciencedirect.com/science/article/pii/0022509687900305
    [13] Grady D E, Hightower M M. Natural fragmentation of exploding cylinders: DE90016108[R]. Albuquerque, NM: Sandia National Labs, 1990.
    [14] 蒋建伟, 张谋, 门建兵.小口径榴弹自然破片形成过程的数值模拟[J].弹箭与制导学报, 2009, 29(1): 114-117. http://www.cnki.com.cn/Article/CJFDTotal-DJZD200901033.htm

    Jiang Jian-wei, Zhang Mou, Men Jian-bing. Numerical simulation of the formation of natural fragments from a small caliber shell[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 114-117. http://www.cnki.com.cn/Article/CJFDTotal-DJZD200901033.htm
    [15] Allen S P. Stress-wave monitoring of erosive particle impacts[D]. Australia: The University of Newcastle, 2004.
    [16] 宋浦, 杨凯, 梁安定, 等.国内外TNT炸药的JWL状态方程及其能量释放差异分析[J].火炸药学报, 2013, 36(2): 42-45. http://www.cqvip.com/QK/90400B/201302/45849149.html

    Song Pu, Yang Kai, Liang An-ding, et al. Difference analysis on JWL-EOS and energy release of different TNT charge[J]. Chinese Journal of Explosives and Propellants, 2013, 36(2): 42-45. http://www.cqvip.com/QK/90400B/201302/45849149.html
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2696
  • HTML全文浏览量:  343
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 修回日期:  2014-05-16
  • 刊出日期:  2015-10-10

目录

    /

    返回文章
    返回