YB-2航空有机玻璃的应变率和温度敏感性及其本构模型

史飞飞 索涛 侯兵 李玉龙

史飞飞, 索涛, 侯兵, 李玉龙. YB-2航空有机玻璃的应变率和温度敏感性及其本构模型[J]. 爆炸与冲击, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08
引用本文: 史飞飞, 索涛, 侯兵, 李玉龙. YB-2航空有机玻璃的应变率和温度敏感性及其本构模型[J]. 爆炸与冲击, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08
Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion And Shock Waves, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08
Citation: Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion And Shock Waves, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08

YB-2航空有机玻璃的应变率和温度敏感性及其本构模型

doi: 10.11883/1001-1455(2015)06-0769-08
基金项目: 国家自然科学基金项目(11372256,11272267,11228206,11202168);高等学校学科创新引智计划项目(B07050)
详细信息
    作者简介:

    史飞飞(1981—), 女, 博士研究生

    通讯作者:

    索涛, suotao@nwpu.edu.cn

  • 中图分类号: O347.1

Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer

  • 摘要: 为了理解和评价YB-2航空有机玻璃在极端环境下的动态力学性能,采用电子万能试验机和分离式Hopkinson压杆对YB-2航空有机玻璃在218~373 K温度范围、10-3~3 000 s-1应变率范围内的压缩力学行为进行了研究,得到了材料的应力应变曲线。结果表明:随着温度的升高,材料的流动应力逐渐减小而破坏应变呈现增大的趋势;温度相同时,材料的流动应力随应变率的增加而增大,破坏应变随应变率的增加而减小。随着应变率的提高,材料的应变软化效应更加剧烈。基于朱-王-唐(ZWT)本构模型,得到了考虑温度效应的本构参数。结果显示,在8%应变范围内,改进的考虑温度效应的本构模型可以较为理想地表征该材料的应力应变响应。
  • 图  1  试样尺寸图和试样的不同取向

    Figure  1.  Sample dimensions and its cutting directions

    图  2  分离式Hopkinson压杆示意图

    Figure  2.  Schematic drawing of split Hopkinson pressure bar

    图  3  不同温度下保温时间曲线和保温所需最小时间

    Figure  3.  Time-temperature curves and minimum times at different temperatures

    图  4  不同取向试样的真实应力应变曲线

    Figure  4.  True strain-stress curves in two directions

    图  5  不同温度下的真实应力应变曲线

    Figure  5.  True strain-stress curves at different temperatures

    图  6  不同应变率下的真实应力应变曲线

    Figure  6.  True strain-stress curves at different strain rates

    图  7  温度-应力峰值曲线

    Figure  7.  Temperature-peak stress curves

    图  8  修正的ZWT模型拟合结果与实验结果的比较

    Figure  8.  Comparison of prediction using modified ZWT model with experimental results

    表  1  温度影响项中各系数的方差和置信区间

    Table  1.   Variances and confidence intervals of the coefficients for thermo-item

    参数方差置信区间
    a0.381 131(0.527 425, 1.273 1)
    b0.009 826(-0.235 72, -0.103 88)
    c0.000 295(-0.004 56, -0.003 54)
    下载: 导出CSV
  • [1] G'Sell C, Jonas J J. Determination of the plastic behavior of solid polymer at constant true strain rate[J]. Journal of Materials Science, 1979, 14(3): 583-591. doi: 10.1007/BF00772717
    [2] 陈建桥, 李铁萍, 李之达, 等.有机玻璃本构关系研究[J].机械科学与技术, 2006, 25(3): 371-374.

    Chen Jian-qiao, Li Tie-ping, Li Zhi-da, et al. Experimental research on the constitutive relationship of PMMA[J]. Mechanical Science and Technology, 2006, 25(3): 371-374.
    [3] 吴衡毅, 马钢, 夏源明. PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学, 2005, 20(2): 193-197. http://www.oalib.com/paper/1413732

    Wu Heng-yi, Ma Gang, Xia Yuan-ming. Experimental study on mechanical properties of PMMA under unidirectional tensile at low and intermediate strain rates[J]. Journal of Experimental Mechanics, 2005, 20(2): 193-197. http://www.oalib.com/paper/1413732
    [4] Arruda E M, Boyce M C, Jayachandran R. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers[J]. Mechanics of Materials, 1995, 19: 193-212. doi: 10.1016/0167-6636(94)00034-E
    [5] Lee O S, Kim M S. Dynamic material property characterization by using split Hopkinson pressure bar(SHPB)technique[J]. Nuclear Engineering and Design, 2003, 226(2): 119-125. doi: 10.1016/S0029-5493(03)00189-4
    [6] Adams G W, Farris R J. Latent energy of deformation of bisphenolapolycarbonate[J]. Journal of Polymer Science, 1988, 26(2): 433-445. doi: 10.1002/polb.1988.090260216/pdf
    [7] Machida T, Lee D. Deep drawing of polypropylene sheets under different heating conditions[J]. Polymer Engeering & Science, 1988, 28(7): 405-412. doi: 10.1002/pen.760280702
    [8] Walley S M, Field J E, Pope P H, et al. A study of the rapid deformation behavior of a range of polymers[J]. Philosphical Transactions of the Royal Society of London: A, 1989, 328: 783-811.
    [9] 索涛, 李玉龙, 刘元镛.温度、应变率对航空PMMA压缩力学性能的影响研究[J].材料科学与工程学报, 2006, 24(4): 547-550. http://www.cnki.com.cn/Article/CJFDTotal-CLKX200604018.htm

    Suo Tao, Li Yu-long, Liu Yuan-yong. Study on temperature and strain rate effects on mechanical behavior of aeronautical PMMA[J]. Journal of Materials Science & Engineering, 2006, 24(4): 547-550. http://www.cnki.com.cn/Article/CJFDTotal-CLKX200604018.htm
    [10] Suo T, Li Y L, Yu H, et al. Temperature effect on the mechanical behavior of acrylic polymers under quasi-static and dynamic loading[J]. Jounal of Shanghai Jiaotong University, 2004, 38: 89-95. http://d.wanfangdata.com.cn/Periodical/shjtdxxb2004z2017
    [11] 焦剑, 雷渭媛.高聚物结构、性能与测试[M].北京: 化学工业出版社, 2003: 438-444.
    [12] 何曼君, 张红东, 陈维孝, 等.高分子物理[M].上海: 复旦大学出版社, 2007: 105-198.
    [13] 朱兆祥, 徐大本, 王礼立.环氧树脂在高应变率下的热粘弹性本构方程和时温度等效性[J].宁波大学学报:理工版, 1988, 1(1): 58-68. http://www.cnki.com.cn/Article/CJFDTotal-LBJY198801009.htm

    Zhu Zhao-xiang, Xu Da-ben, Wang Li-li. Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rates[J]. Journal of Ningbo University: Natural Science & Engineering Edition, 1988, 1(1): 58-68. http://www.cnki.com.cn/Article/CJFDTotal-LBJY198801009.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  4603
  • HTML全文浏览量:  676
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-11
  • 修回日期:  2015-02-04
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回