Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products
-
摘要: 考虑爆炸产物发生化学反应产生的影响,对约束爆炸后约束空间内准静态温度的计算进行了研究。以能量守恒定律为基础,考虑爆炸产物的化学反应动力学过程,推导得到约束空间准静态温度的计算公式和方法,使用C++语言编写了计算程序,并对TNT炸药约束爆炸的情况进行了计算。计算结果表明,对于约束爆炸,爆炸产物发生的化学反应对约束空间内温度的变化有明显影响,且不同的药量体积比条件下,准静态温度的变化趋势不同。研究结果可为更准确的计算约束爆炸后的准静态温度及其他爆炸参数提供有效的方法。Abstract: By focusing our concern on the effect of chemical reactions with detonation products, we have done research on the calculation of the quasi-static temperature of confined explosion. On the basis of the energy conservation, considering the chemical kinetic reaction process of the detonation products, the formula and calculating method of quasi-static temperature were proposed. A computation program was designed using C++ language, which was used to calculate the quasi-static temperature of the TNT confined explosion. Calculation results show that chemical reactions of the detonation products play a very important role in the calculation of the quasi-static temperature in confined explosions, and obviously the temperature varies with the charge volume ratios. Ours is an efficient technique to obtain a more accurate quasi-static temperature and calculate some other parameters of confined explosions.
-
表 1 298 K时TNT炸药爆炸产物发生的化学反应的反应热
Table 1. Chemical reaction heat ΔrHm of reactions of TNT detonation products (T=298 K)
化学反应编号 化学反应 ΔrHm/(kJ·mol-1) 1 C(s)+O2(g) =CO2(g) -393.5 2 CO(g)+(1/2)O2(g) =CO2(g) -282.8 3 C(s)+(1/2)O2(g) =CO(g) -110.7 4 CO(g)+H2O(g) =CO2(g)+H2(g) -41.2 5 C(s)+H2O(g) =CO(g)+H2(g) 131.3 6 C(s)+2H2(g) =CH4 -74.9 表 2 爆炸后约束空间内发生化学反应的情况
Table 2. Chemical reactions after confined explosions with different TNT explosive charge volume ratios
(m·V-1) /(kg·m-3) 发生的化学反应 [0, 0.371 3) C+O2→CO2
CO+$\frac{1}{2}$O2→CO2[0.377, 0.487 4) C+O2→CO2
CO+$\frac{1}{2}$O2→CO2
CO+H2O→CO2+H2[0.487 4, 0.557 0) C+O2→CO2
CO+$\frac{1}{2}$O2→CO2
CO+H2O→CO2+H2[0.557 0, 1.114 0) C+$\frac{1}{2}$O2→CO
CO+$\frac{1}{2}$O2→CO2
CO+H2O→CO2+H2[1.114 0, 3.899 1) C+$\frac{1}{2}$O2→CO
C+H2O→CO+H2
CO+H2O→CO2+H2[3.899 1, +∞) C+$\frac{1}{2}$O2→CO
C+H2O→CO+H2
C+2H2→CH4表 3 式(20)中的摩尔热容计算参数
Table 3. Values of parameters in Eq.(20)
物质 a/(J·mol-1·K-1) b/(J·mol-1·K-2) c′/(J·mol-1·K) c/(J·mol-1·K-3) Tu/K cp, m/(J·mol-1·K-1) C(s) 17.150 4.270×10-3 -8.79×105 298~230 0 8.614 CO(g) 26.537 7.683×10-3 -0.46×105 290~250 0 29.142 CO2(g) 28.660 35.702×10-3 300~200 0 37.129 H2O(g) 30.000 10.710×10-3 0.33×105 298~250 0 33.577 H2(g) 29.066 -0.836×10-3 2.012×10-6 300~150 0 28.840 O2(g) 36.162 0.845×10-3 -4.31×105 298~150 0 29.359 CH4(g) 14.318 74.663×10-3 -17.426×10-6 291~150 0 35.715 N2(g) 27.870 4.270×10-3 298~250 0 29.121 -
[1] 张守保, 黄日德, 张殿臣, 等.抗偶然爆炸结构设计手册(第1/2卷)[M].北京: 中国人民解放军总参工程兵科研三所, 1998: 26-56. [2] 钟巍.约束爆炸中的化学反应动力学数值计算[D].西安: 西北核技术研究所, 2012. [3] Kuhl A L, Bell J B, Beckner V E, et al. Gasdynamic model of turbulent combustion in TNT explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2177-2185. http://www.sciencedirect.com/science/article/pii/S154074891000369X [4] Kuhl A L, Oppenheim A K, Ferguson R E. Thermodynamics of combustion in a confined explosion[R]. Livermore: Lawrence Livermore National Laboratory, 2000: 1-4. [5] Kuhl A L, Ferguson R E, Oppenheim A K. Combustion of TNT products in a confined explosion[R]. Livermore: Lawrence Livermore National Laboratory, 1999: 67-89. [6] Oppenheim A K, Kuhl A L. Dynamic features of closed combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 533-564. http://www.sciencedirect.com/science/article/pii/S0360128500000058 [7] Oppenheim A K, Kuhl A L. Energy loss from closed combustion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1): 1257-1263. http://www.sciencedirect.com/science/article/pii/S0082078400803380 [8] Kuhl A L, Reichenbach H. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291-2298. http://www.sciencedirect.com/science/article/pii/S1540748908000047 [9] 钟巍, 田宙.化学反应动力学应用于约束爆炸的研究进展[J].化学工程, 2011, 39(9): 66-70. http://d.wanfangdata.com.cn/Periodical/hxgc201109015Zhong Wei, Tian Zhou. Research progress in chemical reaction kinetics applied in confined explosions[J]. Chemical Engineering, 2011, 39(9): 66-70. http://d.wanfangdata.com.cn/Periodical/hxgc201109015 [10] 关治, 陆金甫.数值分析基础[M].北京: 高等教育出版社, 2010: 344-345. [11] 印永嘉, 奚正楷, 张树永.物理化学简明教程[M]. 4版.北京: 高等教育出版社, 2009: 24-47. [12] 钟巍, 田宙.多种复杂化学反应动力学统一的数值模拟[J].化学工程, 2011, 39(8): 82-85. http://d.wanfangdata.com.cn/Periodical/hxgc201108020Zhong Wei, Tian Zhou. Numerical simulation for some kinds of complex chemical reaction kinetics[J]. Chemical Engineering, 2011, 39(8): 82-85. http://d.wanfangdata.com.cn/Periodical/hxgc201108020 [13] 张宝枰, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2000: 169. [14] 严清华, 王淑兰, 李岳.大型球形密闭容器内可燃气体爆炸过程的数值模拟[J].天然气工业, 2004, 24(4): 101-103. http://d.wanfangdata.com.cn/Periodical/trqgy200404033Yan Qing-hua, Wang Shu-lan, Li Yue. Numerical simulation of flammable gas explosions in large closed spherical vessels[J]. Natural Gas Industry, 2004, 24(4): 101-103. http://d.wanfangdata.com.cn/Periodical/trqgy200404033 [15] 毕明树, 尹旺华, 丁信伟, 等.管道内可燃气体爆燃的一维数值模拟[J].天然气工业, 2003, 23(4): 89-92. http://d.wanfangdata.com.cn/Periodical/trqgy200304028Bi Ming-shu, Yin Wang-hua, Ding Xin-wei, et al. 1-D Numerical simulation of combustible gas deflagration in pipeline[J]. Natural Gas Industry, 2003, 23(4): 89-92. http://d.wanfangdata.com.cn/Periodical/trqgy200304028 [16] 毕明树, 尹旺华, 丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟[J].天然气工业, 2004, 24(4): 94-96. http://www.cnki.com.cn/Article/CJFDTotal-TRQG200404032.htmBi Ming-shu, Yin Wang-hua, Ding Xin-wei. Numerous simulations of flammable gas deflagrations in cylindrical vessels[J]. Natural Gas Industry, 2004, 24(4): 94-96. http://www.cnki.com.cn/Article/CJFDTotal-TRQG200404032.htm [17] National Institute of Standards and Technology. NIST Chemical Kinetics Database[DB/OL]. http://kinetics.nist.gov/kinetics/index.jsp.2012-02/2012-04.