Computational design for complex loading on grade density impactor with strain rates of 105~106 s-1
-
摘要: 为了在气炮上实现应变率为105~106 s-1的复杂加载技术研究,采用自行研制的拉格朗日程序MLEP(multi-material Lagrangian elastic-plastic)对Al-Cu-W材料体系的阻抗梯度飞片复杂加载不锈钢靶板进行数值模拟,计算设计并分析了阻抗梯度飞片的厚度和密度分布指数对靶板压力、速度和应变率峰值等波形的影响。结果表明:密度指数分布越大,加载时间越短,加载后期的压力、速度和应变率峰值曲线更陡峭;同时, 为了避免靶板/LiF窗口界面反射的稀疏波早于阻抗梯度飞片后界面反射的稀疏波达到碰撞面位置,计算设计中还考虑了飞片厚度的影响。此外,对基于理论设计的阻抗梯度飞片进行了动态考核实验,实验结果基本反映了预期的设计,为材料强度的测量奠定了基础。Abstract: In order to carry out the complex loading research with the strain rates varying from 105 s-1 to 106 s-1 on the light gas gun, we numerically simulated the complex loading on the steel target by the graded ensity impactor (GDI) of Al-Cu-W system using our own developed Lagrangian code MLEP (multi-material Lagrangian elastic-plastic). In our simulation, the effects of the thickness of the GDI and the power exponent of denstiy distribution on the pressure, velocity, and peak strain rate of the target were investigated. The results indicate that the loading time decreases as the power exponent of density distribution increases, and the profiles of pressure, velocity and peak strain rate at the later stage of the loading are steeper than those with smaller power exponents. Moreover, the effect of the thickness of the GDI is considered in our computational design to prevent the confluence of the rarefaction waves emanating from the back of the GDI and the interface between the target and LiF window on the impact interface. Finally, a dynamic test was conducted for the GDI based on the design, and the results show the good agreement between the design and the experiment, which paves the way for the strength measurement of materials in the future.
-
Key words:
- solid mechanics /
- complex loading /
- computational design /
- grade density impactor /
- Al-Cu-W system
-
表 1 3种阻抗梯度飞片主要参数
Table 1. The primary parameters of the three GDIs
实验号 飞片层数 h/mm P 密度分布 1 13 2.1 2 ρ=2.712+4.101x2 2 12 2.1 3 ρ=2.712+2.278x3 3 10 1.8 3 ρ=2.712+3.937x3 -
[1] Barker L M, Scott D D. Development of a high-pressure quasi-isentropic plane wave generating capability[R]. SAND 84-0432, 1984. [2] Chhabildas L C, Barker L M. Dynamic quasi-isentropic compression of tungsten[C]∥Schmidt S C, Holmes N C. Shock Compression of Condensed Matter-1987. Amsterdam: Elsevier Science Publishers B. V., 1988: 111-114. [3] Chhabildas L C, Asay J R, Barker L M. Dynamic quasi-isentropic loading of tungsten[J]. High Pressure Research, 1990, 5: 842-844. [4] Chhabildas L C, Asay J R, Barker L M. Shear strength of tungsten under shock-and quasi-isentropic loading to 250 GPa[R]. SAND 88-0306, UC-704, 1988. [5] Chhabildas L C, Asay J R. Dynamic yield strength and spall strength measurements under quasi-isentropic loading[R]. SAND 90-0883C, 1990. [6] 柏劲松, 罗国强, 黄娇凤, 等. Pillow飞片气炮加载实验的数值模拟研究[J].高压物理学报, 2011, 25(5): 390-394.Bai Jing-song, Luo Guo-qiang, Huang Jiao-feng, et al. Numerical simulation of the gas gun experiment with pillow impactor loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 390-394. [7] 柏劲松, 罗国强, 王翔, 等. Mg-W体系密度梯度飞片复杂加载实验的计算分析[J].力学学报, 2010, 42(6): 1068-1073.Bai Jing-song, Luo Guo-qiang, Wang Xiang, et al. Calculation and analysis of the Mg-W GDI complex loading experiment[J]. Acta Mechanica Sinica, 2010, 42(6): 1068-1073. [8] 沈强, 王传彬, 张联盟, 等.为实现准等熵压缩的波阻抗梯度飞片的实验研究[J].物理学报, 2002, 51(8): 1759-1762. http://www.oalib.com/paper/1439659Shen Qiang, Wang Chuan-bin, Zhang Lian-meng, et al. A study on generating quasi-isentropic compression via graded impedance flyer[J]. Acta Physica Sinica, 2002, 51(8): 1759-1762. http://www.oalib.com/paper/1439659 [9] Luo Guo-qiang, Zhang Jian, Li Mei-juan, et al. Interfacial microstructure and mechanical strength of 93W/Ta diffusion-bonded joints with Ni interlayer[J]. Metallurgical and Materials Transactions: A, 2013, 44(2): 602-605. doi: 10.1007/s11661-012-1570-1 [10] Zhang Jian, Luo Guo-qiang, Li Mei-juan, et al. Study on microstructure and property of diffusion-bonded Mo-Cu joints[J]. Key Engineering Materials, 2012, 508: 178-182. [11] 柏劲松, 罗国强, 唐蜜, 等.冲击加载-准等熵加载过程的密度梯度飞片计算设计[J].高压物理学报, 2009, 23(3): 173-180.Bai Jing-song, Luo Guo-qiang, Tang Mi, et al. Computational design of graded density impactors for shock loading and quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 173-180. 期刊类型引用(6)
1. 侯旭华,印立魁,曲乾坤,梁家栋,兰宇鹏,王君凤,杨芮,陈智刚. 宽速域条件下卵形弹侵彻规律研究. 弹箭与制导学报. 2024(04): 62-71 . 百度学术
2. 王振宁,尹建平,李旭东,伊建亚,张渝. 有限厚钢筋混凝土参数对破片侵彻性能的影响. 兵器装备工程学报. 2023(05): 180-185 . 百度学术
3. 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . 百度学术
4. 刘均伟,张先锋,刘闯,陈海华,熊玮,谈梦婷. 空腔膨胀理论靶体阻力模型及其应用研究进展. 爆炸与冲击. 2021(10): 4-30 . 本站查看
5. 邓勇军,陈小伟,钟卫洲,何丽灵. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究. 爆炸与冲击. 2020(02): 26-36 . 本站查看
6. 邓勇军,陈小伟,姚勇. 钢筋混凝土靶侵彻过程中空腔膨胀响应分区研究. 中国科学:物理学 力学 天文学. 2020(02): 34-51 . 百度学术
其他类型引用(3)
-