实现应变率为105~106 s-1的阻抗梯度飞片复杂加载波形计算分析

柏劲松 李蕾 俞宇颖 王宇 张红平 罗国强 沈强 戴诚达 谭华 吴强 张联盟

柏劲松, 李蕾, 俞宇颖, 王宇, 张红平, 罗国强, 沈强, 戴诚达, 谭华, 吴强, 张联盟. 实现应变率为105~106 s-1的阻抗梯度飞片复杂加载波形计算分析[J]. 爆炸与冲击, 2015, 35(6): 792-798. doi: 10.11883/1001-1455(2015)06-0792-07
引用本文: 柏劲松, 李蕾, 俞宇颖, 王宇, 张红平, 罗国强, 沈强, 戴诚达, 谭华, 吴强, 张联盟. 实现应变率为105~106 s-1的阻抗梯度飞片复杂加载波形计算分析[J]. 爆炸与冲击, 2015, 35(6): 792-798. doi: 10.11883/1001-1455(2015)06-0792-07
Bai Jing-song, Li Lei, Yu Yu-ying, Wang Yu, Zhang Hong-ping, Luo Guo-qiang, Shen Qiang, Dai Cheng-da, Tan Hua, Wu Qiang, Zhang Lian-meng. Computational design for complex loading on grade density impactor with strain rates of 105~106 s-1[J]. Explosion And Shock Waves, 2015, 35(6): 792-798. doi: 10.11883/1001-1455(2015)06-0792-07
Citation: Bai Jing-song, Li Lei, Yu Yu-ying, Wang Yu, Zhang Hong-ping, Luo Guo-qiang, Shen Qiang, Dai Cheng-da, Tan Hua, Wu Qiang, Zhang Lian-meng. Computational design for complex loading on grade density impactor with strain rates of 105~106 s-1[J]. Explosion And Shock Waves, 2015, 35(6): 792-798. doi: 10.11883/1001-1455(2015)06-0792-07

实现应变率为105~106 s-1的阻抗梯度飞片复杂加载波形计算分析

doi: 10.11883/1001-1455(2015)06-0792-07
基金项目: 国家自然科学基金项目(11372294, 11532012);冲击波物理与爆轰物理重点实验室基金项目(9140C670301150C67290);中物院国防科技重点实验室专项基金项目(2012-专-10)
详细信息
    作者简介:

    柏劲松(1968—), 男, 博士, 研究员, bjsong@foxmail.com

  • 中图分类号: O347.3

Computational design for complex loading on grade density impactor with strain rates of 105~106 s-1

  • 摘要: 为了在气炮上实现应变率为105~106 s-1的复杂加载技术研究,采用自行研制的拉格朗日程序MLEP(multi-material Lagrangian elastic-plastic)对Al-Cu-W材料体系的阻抗梯度飞片复杂加载不锈钢靶板进行数值模拟,计算设计并分析了阻抗梯度飞片的厚度和密度分布指数对靶板压力、速度和应变率峰值等波形的影响。结果表明:密度指数分布越大,加载时间越短,加载后期的压力、速度和应变率峰值曲线更陡峭;同时, 为了避免靶板/LiF窗口界面反射的稀疏波早于阻抗梯度飞片后界面反射的稀疏波达到碰撞面位置,计算设计中还考虑了飞片厚度的影响。此外,对基于理论设计的阻抗梯度飞片进行了动态考核实验,实验结果基本反映了预期的设计,为材料强度的测量奠定了基础。
  • 图  1  复杂加载实验示意图

    Figure  1.  Schematic diagram of complexity loading experiment

    图  2  计算设计的Al-Cu-W体系飞片密度分布

    Figure  2.  Density distribution of Al-Cu-W impactor in computational design

    图  3  3种Al-Cu-W体系飞片算例的碰撞面位置压力和速度历史

    Figure  3.  Profiles of pressure and velocity at impact position

    图  4  3种Al-Cu-W体系飞片算例的中心位置压力和速度历史比较

    Figure  4.  Profiles of pressure and velocity at center

    图  5  3种Al-Cu-W体系飞片算例的界面位置压力和速度历史比较

    Figure  5.  Profiles of pressure and velocity at interface

    图  6  靶板中心位置和靶板/LiF窗口界面位置的应变率峰值历史

    Figure  6.  Comparison of maximum strain rates at center and interface

    图  7  带LiF窗口算例中压力随时间和空间的分布

    Figure  7.  Pressure contours drawn in x-t space with LiF windows

    图  8  实验采用4路DPS测量的速度剖面和MLEP计算的速度剖面

    Figure  8.  Velocity profiles as achieve from experiment by DPS and simulated by MLEP

    表  1  3种阻抗梯度飞片主要参数

    Table  1.   The primary parameters of the three GDIs

    实验号飞片层数h/mmP密度分布
    1132.12ρ=2.712+4.101x2
    2122.13ρ=2.712+2.278x3
    3101.83ρ=2.712+3.937x3
    下载: 导出CSV
  • [1] Barker L M, Scott D D. Development of a high-pressure quasi-isentropic plane wave generating capability[R]. SAND 84-0432, 1984.
    [2] Chhabildas L C, Barker L M. Dynamic quasi-isentropic compression of tungsten[C]∥Schmidt S C, Holmes N C. Shock Compression of Condensed Matter-1987. Amsterdam: Elsevier Science Publishers B. V., 1988: 111-114.
    [3] Chhabildas L C, Asay J R, Barker L M. Dynamic quasi-isentropic loading of tungsten[J]. High Pressure Research, 1990, 5: 842-844.
    [4] Chhabildas L C, Asay J R, Barker L M. Shear strength of tungsten under shock-and quasi-isentropic loading to 250 GPa[R]. SAND 88-0306, UC-704, 1988.
    [5] Chhabildas L C, Asay J R. Dynamic yield strength and spall strength measurements under quasi-isentropic loading[R]. SAND 90-0883C, 1990.
    [6] 柏劲松, 罗国强, 黄娇凤, 等. Pillow飞片气炮加载实验的数值模拟研究[J].高压物理学报, 2011, 25(5): 390-394.

    Bai Jing-song, Luo Guo-qiang, Huang Jiao-feng, et al. Numerical simulation of the gas gun experiment with pillow impactor loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 390-394.
    [7] 柏劲松, 罗国强, 王翔, 等. Mg-W体系密度梯度飞片复杂加载实验的计算分析[J].力学学报, 2010, 42(6): 1068-1073.

    Bai Jing-song, Luo Guo-qiang, Wang Xiang, et al. Calculation and analysis of the Mg-W GDI complex loading experiment[J]. Acta Mechanica Sinica, 2010, 42(6): 1068-1073.
    [8] 沈强, 王传彬, 张联盟, 等.为实现准等熵压缩的波阻抗梯度飞片的实验研究[J].物理学报, 2002, 51(8): 1759-1762. http://www.oalib.com/paper/1439659

    Shen Qiang, Wang Chuan-bin, Zhang Lian-meng, et al. A study on generating quasi-isentropic compression via graded impedance flyer[J]. Acta Physica Sinica, 2002, 51(8): 1759-1762. http://www.oalib.com/paper/1439659
    [9] Luo Guo-qiang, Zhang Jian, Li Mei-juan, et al. Interfacial microstructure and mechanical strength of 93W/Ta diffusion-bonded joints with Ni interlayer[J]. Metallurgical and Materials Transactions: A, 2013, 44(2): 602-605. doi: 10.1007/s11661-012-1570-1
    [10] Zhang Jian, Luo Guo-qiang, Li Mei-juan, et al. Study on microstructure and property of diffusion-bonded Mo-Cu joints[J]. Key Engineering Materials, 2012, 508: 178-182.
    [11] 柏劲松, 罗国强, 唐蜜, 等.冲击加载-准等熵加载过程的密度梯度飞片计算设计[J].高压物理学报, 2009, 23(3): 173-180.

    Bai Jing-song, Luo Guo-qiang, Tang Mi, et al. Computational design of graded density impactors for shock loading and quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 173-180.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3179
  • HTML全文浏览量:  384
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-21
  • 修回日期:  2014-10-22
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回