Study on the model of hot-spot ignition based on friction generated heat on the microcrack face
-
摘要: 开展了基于微裂纹界面摩擦生热的细观点火模型研究,采用有限元方法对包含化学反应放热和摩擦生热的热传递方程进行了离散求解,计算模型中考虑了炸药颗粒熔化对升温过程的影响。着重分析了点火模型中主要参数(热点尺度、应变率和界面压力)对炸药点火的影响规律。数值研究表明,随着热点尺度的增大,热点的温度上升越快,越容易发生点火;应变率越大或者界面压力越高,热量积累越快,炸药越容易点火。Abstract: A hot-spot ignition model based on friction generated heat on microcrack face was established. In this model, the heat conduction equation including chemical reaction and friction was solved by implicit finite element method. Furthermore, the latent heat resulting from particle melting was also taken into account in this model. The effects of such key parameters hot-spot size, strain rate, and interface pressure on explosive ignition were detected and analyzed in detail. It is found that the temperature of the hot-spot rises more quickly and the response occurs earlier in time with the increase of the hot-spot size. The accumulation of heat is faster and the explosive is more likely to be ignited where the strain rate is larger or the pressure is higher.
-
Key words:
- mechanics of explosion /
- ignition model /
- FEM /
- microcrack /
- friction /
- hot-spot size /
- strain rate
-
-
[1] Asay Blaine W. Non-shock initiation of explosives[M]. Heidelberg: Springer-Verlag, 2010: 15-18. [2] Bowden F P, Yoffe A D. Initiation and growth of explosives in liquids and solids[M]. Cambridge: Cambridge University Press, 1952. [3] Bowden F P, Yoffe A D. Hot spots on rubbing surfaces and the detonation of explosives by friction[J]. Proceedings of the Royal Society of London, Series A: Mathematical & Physical Sciences, 1947, 188(10): 329-349. doi: 10.1098/rspa.1947.0012 [4] Amosov A P, Bostandzhiyan S A, Kozlov V S. Ignition of solid explosives by the heat of dry friction[J]. Fizika Goreniya i Vzryva, 1972, 8(3): 362-368. http://www.onacademic.com/detail/journal_1000034907003910_0866.html [5] Amosov A P, Bostandzhiyan S A, Kozlov V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Fizika Goreniya i Vzryva, 1976, 12(5): 699-703. doi: 10.1007/BF00743166 [6] Wiegand D A, Redingius B, Ellis K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629. http://www.sciencedirect.com/science/article/pii/S0020768311000424 [7] Wiegand D A, Redingius B, Ellis K, et al. Evidence for fricgtion between crack surfaces during deformation of dcomposite plastic bonded explosives[C]∥Elert M L, Buttle W T, Furnish M D, et al. Proceedings of Shock Compression of Condensed Matter-2009. Nashville, Tennessee, 2009: 349-352. [8] Wiegand D A, Redingius B. The role of friction in the mechanical failure properties of a polymer particulate composite[C]∥APS March Meeting. New Orleans, 2008. [9] 陈文.高速侵彻条件下战斗部装药安全性研究[D].北京: 北京理工大学, 2009. [10] Boyle V, Frey R, Blake O. Combined pressure shear ignition of explosive[C]∥Lee E L, Short J M. Proceedings of the 9th International Detonation Symposium. Oregon, Portland, 1989: 3-17. [11] Frey R B. The initiation of explosive charges by rapid shear[C]∥Proceedings of the 7th International Detonation Symposium. Annapolis, Maryland, 1981: 36-42. [12] Dienes J K. A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity[M]. New York: Springer, 1996: 366-398. [13] Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]∥Short J M, Kennedy J E. Proceeding of the 11th International Detonation Symposium. Snowmass, Colorado, 1998: 717-724. [14] Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. Journal of Computer-Aided Materials Design, 2000, 7(3): 217-237. doi: 10.1023/A:1011874909560 [15] Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of Mechanical Physical Solids, 1998, 46(12): 2303-2322. doi: 10.1016/S0022-5096(98)00011-8 [16] Linan A, Williams F A. Theory of ignition of a reactive solid by constant energy flux[J]. Combustion Science and Technology, 1971, 3(2): 91-98. doi: 10.1080/00102207108952276 期刊类型引用(5)
1. 夏全志,吴艳青,柴传国,杨昆,黄风雷. 冲击加载下PBX界面对热点形成和安全性影响. 兵工学报. 2024(06): 1840-1853 . 百度学术
2. 胡秋实,尚海林,吴兆奎,廖深飞,傅华. PBX炸药缝隙挤压加载下的破裂模式及点火响应. 兵工学报. 2024(09): 3135-3146 . 百度学术
3. Guijun Wang,Yanqing Wu,Kun Yang,Quanzhi Xia,Fenglei Huang. Optimization of mechanical and safety properties by designing interface characteristics within energetic composites. Defence Technology. 2024(12): 59-72 . 必应学术
4. 黄彬彬,傅华,喻寅,刘仓理. 基于有限元-离散元结合方法的Steven实验三维数值模拟. 含能材料. 2020(10): 995-1002 . 百度学术
5. 刘睿,韩勇,代晓淦,李明,王军. 初始裂纹对高聚物粘结炸药低速撞击点火影响数值模拟研究. 含能材料. 2019(10): 812-818 . 百度学术
其他类型引用(3)
-
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
端到端机器学习代理模型构建及其在爆轰驱动问题中的应用
柏劲松 等, 爆炸与冲击, 2025
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
隧道表面爆破地震波的产生机制及传播特征
蒙贤忠 等, 爆炸与冲击, 2024
火花塞辅助甲醇发动机点火控制策略研究
席晴 等, 上海海事大学学报, 2024
基于黏结滑动摩擦理论的直角切削热—力建模与仿真分析
李炳林 等, 工具技术, 2025
混凝土界面过渡区对裂纹扩展过程的影响
贾世旭 等, 高压物理学报, 2023
Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: insights into protein quality
Chen, Lu et al., FOOD CHEMISTRY, 2024
A diffusion-controlled kinetic model for binder burnout in a green part fabricated by binder jetting based on the thermal decomposition kinetics of teg-dma
ADDITIVE MANUFACTURING, 2025
Fretting contact of fgpm coating-substrate system under cyclic torque based on laminated model
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2025