干燥和饱和混凝土动态力学特性及其机理

张永亮 朱大勇 李永池 姚华彦 黄瑞源 李煦阳

张永亮, 朱大勇, 李永池, 姚华彦, 黄瑞源, 李煦阳. 干燥和饱和混凝土动态力学特性及其机理[J]. 爆炸与冲击, 2015, 35(6): 864-870. doi: 10.11883/1001-1455(2015)06-0864-07
引用本文: 张永亮, 朱大勇, 李永池, 姚华彦, 黄瑞源, 李煦阳. 干燥和饱和混凝土动态力学特性及其机理[J]. 爆炸与冲击, 2015, 35(6): 864-870. doi: 10.11883/1001-1455(2015)06-0864-07
Zhang Yong-liang, Zhu Da-yong, Li Yong-chi, Yao Hua-yan, Huang Rui-yuan, Li Xu-yang. Dynamic mechanical properties of dry and saturated concretes and their mechanism[J]. Explosion And Shock Waves, 2015, 35(6): 864-870. doi: 10.11883/1001-1455(2015)06-0864-07
Citation: Zhang Yong-liang, Zhu Da-yong, Li Yong-chi, Yao Hua-yan, Huang Rui-yuan, Li Xu-yang. Dynamic mechanical properties of dry and saturated concretes and their mechanism[J]. Explosion And Shock Waves, 2015, 35(6): 864-870. doi: 10.11883/1001-1455(2015)06-0864-07

干燥和饱和混凝土动态力学特性及其机理

doi: 10.11883/1001-1455(2015)06-0864-07
基金项目: 国家自然科学基金青年基金项目(11102205, 11202206);中国博士后科学基金项目(20100480685)
详细信息
    作者简介:

    张永亮(1987-), 男, 博士研究生

    通讯作者:

    姚华彦, yaohuayan@163.com

  • 中图分类号: O347.3

Dynamic mechanical properties of dry and saturated concretes and their mechanism

  • 摘要: 采用分离式Hopkinson杆装置,对混凝土进行干燥和饱和状态下的SHPB实验,并与准静态实验进行对比。结果表明:干燥和饱和混凝土均具有明显的应变率效应,中等应变率条件下的应力应变曲线上升段比准静态的曲线陡;饱和混凝土动态强度提高的幅度接近干燥混凝土的2倍,具有更强的应变率敏感性;存在一个应变率临界值,仅当应变率大于临界值时,饱和混凝土的动态强度才大于干燥混凝土的的动态强度;基于实验结果,给出了不同饱和度混凝土强度与应变率的关系。
  • 图  1  大口径分离式Hopkinson压杆示意图

    Figure  1.  Schematic diagram of large diameter split Hopkinson pressure bar

    图  2  C40混凝土试样

    Figure  2.  C40 concrete test specimens

    图  3  干燥混凝土应力应变曲线

    Figure  3.  Stress-strain curves of dry concrete

    图  4  饱和混凝土应力应变曲线

    Figure  4.  Stress-strain curves of saturated concrete

    图  5  干燥和饱和混凝土的应力应变曲线

    Figure  5.  Comparison of stress-strain curves of dry and saturated concretes

    图  6  干燥与饱和混凝土峰值应变与应变率关系曲线

    Figure  6.  Comparison of peak strain-strain rate curves of dry and saturated concretes

    图  7  干燥与饱和混凝土强度与应变率关系曲线

    Figure  7.  Strength-strain rate curves of dry and saturated concrete

    图  8  干燥与饱和混凝土动态强度与应变率拟合

    Figure  8.  Strength-strain rate fitting curves of dry and saturated concrete

    图  9  干燥和饱和混凝土模型示意图

    Figure  9.  Schematic model of dry and saturated concrete

    图  10  不同应变率条件下饱和混凝土裂隙中水的作用力示意图

    Figure  10.  Schematic force of water in saturated concrete cracks at different strain rates

    表  1  准静态条件下的实验结果

    Table  1.   Results under quasi-static conditions

    状态σ0/MPaε0/s-1
    干燥49.840.006 190.000 4
    饱和36.170.005 010.000 4
    下载: 导出CSV
  • [1] Bjerkli L, Jensen J, Lenschow R. Strain development and static compressive strength of concrete exposed to water pressure loading[J]. ACI Structural Journal, 1993, 90(3): 310-315. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/4189
    [2] Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal, 1996, 93(3): 293-300. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=9814
    [3] Rossi P, Van Mier J G M, Boulay C. The dynamic behaviour of concrete: Influence of free water[J]. Materials and Structures, 1992, 25(9): 509-514. doi: 10.1007/BF02472446
    [4] Rossi P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete[J]. Magazine of Concrete Research, 1991, 43(154): 53-57. doi: 10.1680/macr.1991.43.154.53
    [5] Mehta P K, Nonteiro P J M. Concrete: Microstructure, properties and materials[M]. Indian Concrete Institute, 1997.
    [6] Vu X H, Malecot Y, Daudeville L, et al. Analysis of concrete behavior under high confinemen: Effect of the saturation ratio[J]. International Journal of Solids and Structures, 2009, 46(5): 1105-1120. doi: 10.1016/j.ijsolstr.2008.10.015
    [7] 王海龙, 李庆斌.不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J].水利发电学报, 2007, 26(1): 84-89.

    Wang Hai-long, Li Qing-bin. Experiments of the compressive properties of dry and saturated concrete under different loading rates[J]. Journal of Hydroelectric Engineering, 2007, 26(1): 84-89.
    [8] 胡时胜, 王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击, 2002, 22(3): 242-246. http://www.bzycj.cn/article/id/10155

    Hu Shi-sheng, Wang Dao-rong. Dynamic constitutive relation of concrete under impact[J]. Explosion and Shock Waves, 2002, 22(3): 242-246. http://www.bzycj.cn/article/id/10155
    [9] 吕培印, 宋玉普, 侯景鹏.一向侧压混凝土在不同加载速率下的受压试验及其破坏准则[J].工程力学, 2002, 19(5): 67-71. http://d.wanfangdata.com.cn/periodical/gclx200205013

    Lü Pei-yin, Song Yu-pu, Hou Jing-peng. Experimental study and failure criterion of compressive concrete under various loading rates with uniaxial lateral confinement[J]. Engineering Mechanics, 2002, 19(5): 67-71. http://d.wanfangdata.com.cn/periodical/gclx200205013
    [10] 李赞成, 张韬, 陈磊.湿饱和混凝土抗侵彻性能分析[J].弹箭与制导学报, 2009, 29(4): 106-108.

    Li Zan-cheng, Zhang Tao, Chen Lei. The analysis on anti-penetration performance of moist saturated concrete[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(4): 106-108.
    [11] Rossi P, Van Mier J G M, Toutlemonde F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J]. Materials and Structures, 1994, 27(5): 260-264. doi: 10.1007/BF02473042
    [12] Rossi P. Strain rate effects in concrete structures: The LCPC experience[J]. Materials and Structures, 1997(3): 54-62. doi: 10.1007/BF02539277
    [13] Zheng D, Li Q. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity[J]. Engineering Fracture Mechanics, 2004, 71(16/17): 2319-2327.
    [14] 周志芳.裂隙介质水动力学原理[M].北京: 高等教育出版社, 2007.
    [15] Yaman I O, Hearn N, et al. Active and non-active porosity in concrete part Ⅰ: Experimental evidence[J]. Materials and Structures, 2002, 35(2): 102-109. doi: 10.1007/BF02482109
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2997
  • HTML全文浏览量:  412
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 修回日期:  2014-04-02
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回